Frenet-Serret and the Estimation of Curvature and Torsion

Peter Kim
University of Guelph
August 29, 2011
BIRS

Joint work with Kang-Rae Kim (Korea University), Ja-Yong Koo (Korea University) and Michael Pierrynowski (McMaster University)
Outline

Preliminaries

Peter Kim

Frenet-Serret and the Estimation of Curvature and Torsion
Outline

Preliminaries

Curvature and Torsion
Outline

Preliminaries
Curvature and Torsion
Statistical Estimation
Outline

Preliminaries
Curvature and Torsion
Statistical Estimation
Application to Biomechanics
differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$
differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\|\alpha'(t)\| = 1$ for $t \in [a, b]$
differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\|\alpha'(t)\| = 1$ for $t \in [a, b]$

$T = \alpha'$ the tangent
differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\|\alpha'(t)\| = 1$ for $t \in [a, b]$

$T = \alpha'$ the tangent

$N = T' / \| T' \|$ the normal
differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\|\alpha'(t)\| = 1$ for $t \in [a, b]$

$T = \alpha'$ the tangent

$N = T'/\|T'\|$ the normal

$B = T \times N$ the binormal
differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$
curve is parameterized by arclength $\|\alpha'(t)\| = 1$ for $t \in [a, b]$
$T = \alpha'$ the tangent
$N = T'/\|T'\|$ the normal
$B = T \times N$ the binormal

where $'$ indicates differentiation and \times denotes cross product
\{ T, N, B \} are pairwise orthonormal hence form an orthonormal basis for \mathbb{R}^3 for each $t \in [a, b]$
\{T, N, B\} are pairwise orthonormal hence form an orthonormal basis for \mathbb{R}^3 for each $t \in [a, b]$

Frenet-Serret frame
{T, N, B} are pairwise orthonormal hence form an orthonormal basis for \mathbb{R}^3 for each $t \in [a, b]$

Frenet-Serret frame satisfies the differential equation

$$
\begin{pmatrix}
T' \\
N' \\
B'
\end{pmatrix} =
\begin{pmatrix}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{pmatrix}
\begin{pmatrix}
T \\
N \\
B
\end{pmatrix}
$$
{T, N, B} are pairwise orthonormal hence form an orthonormal basis for \(\mathbb{R}^3 \) for each \(t \in [a, b] \).

Frenet-Serret frame satisfies the differential equation

\[
\begin{pmatrix}
T' \\
N' \\
B'
\end{pmatrix} =
\begin{pmatrix}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{pmatrix}
\begin{pmatrix}
T \\
N \\
B
\end{pmatrix}
\]

Frenet-Serret formulas
Curvature and Torsion

\[\kappa(t) = \| T'(t) \| \text{ is the curvature} \]
Curvature and Torsion

\[\kappa(t) = \| T'(t) \| \] is the curvature
\[\tau(t) = -\langle N(t), B'(t) \rangle \] is the torsion
Curvature and Torsion

\[\kappa(t) = \| T'(t) \| \] is the curvature

\[\tau(t) = -\langle N(t), B'(t) \rangle \] is the torsion

curvature measures how fast the unit tangent vector rotates
Curvature and Torsion

\[\kappa(t) = \| T'(t) \| \] is the curvature

\[\tau(t) = -\langle N(t), B'(t) \rangle \] is the torsion

curvature measures how fast the unit tangent vector rotates
torsion characterizes the non-planarity of a three-dimensional space curve
Curvature and Torsion

\[\kappa(t) = \| T'(t) \| \] is the curvature

\[\tau(t) = -\langle N(t), B'(t) \rangle \] is the torsion

Curvature measures how fast the unit tangent vector rotates.

Torsion characterizes the non-planarity of a three-dimensional space curve.
previous formula assumes unit speed, if we take the original curve
\(\alpha : [a, b] \rightarrow \mathbb{R}^3 \)
Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve

\[\alpha : [a, b] \rightarrow \mathbb{R}^3 \]

\[\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3} \] is the curvature
Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve
\(\alpha : [a, b] \rightarrow \mathbb{R}^3 \)

\[\kappa(t) = \frac{\| \alpha'(t) \times \alpha''(t) \|}{\| \alpha'(t) \|^3} \] is the curvature

\[\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\| \alpha'(t) \times \alpha''(t) \|^2} \] is the torsion
Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve
\(\alpha : [a, b] \to \mathbb{R}^3 \)

\[\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3} \] is the curvature

\[\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2} \] is the torsion

curvature measures how fast the tangent vector rotates
Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve
\(\alpha : [a, b] \rightarrow \mathbb{R}^3 \)

\[
\kappa(t) = \frac{\| \alpha'(t) \times \alpha''(t) \|}{\| \alpha'(t) \|^3} \quad \text{is the curvature}
\]

\[
\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\| \alpha'(t) \times \alpha''(t) \|^2} \quad \text{is the torsion}
\]

curvature measures how fast the tangent vector rotates
torsion characterizes the non-planarity of a three-dimensional space curve
Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve
\(\alpha : [a, b] \rightarrow \mathbb{R}^3 \)

\[
\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3} \quad \text{is the curvature}
\]

\[
\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2} \quad \text{is the torsion}
\]

curvature measures how fast the tangent vector rotates
torsion characterizes the non-planarity of a three-dimensional space curve
consider \(h_i = f(t_i) + \varepsilon_i \) using data \((t_i, h_i)\) and assuming \(\varepsilon_i \) are errors, \(i = 1, \ldots, n \)
consider \(h_i = f(t_i) + \varepsilon_i \) using data \((t_i, h_i)\) and assuming \(\varepsilon_i \) are errors, \(i = 1, \ldots, n \)

consider \(K \) knots, \(\xi_1 < \xi_2 < \ldots < \xi_K \), and take B-spline basis functions, \(B_j, j = 1, \ldots, K \)
consider \(h_i = f(t_i) + \varepsilon_i \) using data \((t_i, h_i)\) and assuming \(\varepsilon_i \) are errors, \(i = 1, \ldots, n \)

consider \(K \) knots, \(\xi_1 < \xi_2 < \ldots < \xi_K \), and take B-spline basis functions, \(B_j, j = 1, \ldots, K \)

then form \(s(t; \beta) = \sum_{j=1}^{K} \beta_j B_j(t) \)
Statistical Estimation

consider $h_i = f(t_i) + \varepsilon_i$ using data (t_i, h_i) and assuming ε_i are errors, $i = 1, \ldots, n$

consider K knots, $\xi_1 < \xi_2 < \ldots < \xi_K$, and take B-spline basis functions, $B_j, j = 1, \ldots, K$

then form $s(t; \beta) = \sum_{j=1}^{K} \beta_j B_j(t)$

estimate β by

$$\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{n} \left(h_i - \beta^\top B(t_i) \right)^2,$$
Statistical Estimation

consider \(h_i = f(t_i) + \varepsilon_i \) using data \((t_i, h_i)\) and assuming \(\varepsilon_i \) are errors, \(i = 1, \ldots, n \)

consider \(K \) knots, \(\xi_1 < \xi_2 < \ldots < \xi_K \), and take B-spline basis functions, \(B_j, j = 1, \ldots, K \)

then form \(s(t; \beta) = \sum_{j=1}^{K} \beta_j B_j(t) \)

estimate \(\beta \) by

\[
\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{n} \left(h_i - \beta^\top B(t_i) \right)^2,
\]

the estimator of \(f \) is defined by \(\hat{f} = \sum_{j=1}^{K} \hat{\beta}_j B_j \)
since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:
since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:

set \(K_0 \) initial knots with equally spaced percentiles among the data points
since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:

set K_0 initial knots with equally spaced percentiles among the data points

sequentially delete the basis function having the minimum absolute t-statistic
since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:

set K_0 initial knots with equally spaced percentiles among the data points

sequentially delete the basis function having the minimum absolute t-statistic

select the model having the minimum Akaike information criterion (AIC) statistic
let \(\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top \) be the fitted curve
Estimation of curvature and torsion

let $\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$ be the fitted curve

define $\alpha_n^{(\ell)}(t) = (\alpha_{1,n}^{(\ell)}(t), \alpha_{2,n}^{(\ell)}(t), \alpha_{3,n}^{(\ell)}(t))^\top$ be the ℓ–th derivative
Estimation of curvature and torsion

let $\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$ be the fitted curve

define $\alpha^{(\ell)}_n(t) = (\alpha^{(\ell)}_{1,n}(t), \alpha^{(\ell)}_{2,n}(t), \alpha^{(\ell)}_{3,n}(t))^\top$ be the ℓ–th derivative

alternatively one may start with an ℓ–th derivative and integrate to get lower order derivatives
Estimation of curvature and torsion

let $\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$ be the fitted curve

define $\alpha_n^{(\ell)}(t) = (\alpha_{1,n}^{(\ell)}(t), \alpha_{2,n}^{(\ell)}(t), \alpha_{3,n}^{(\ell)}(t))^\top$ be the ℓ—th derivative

alternatively one may start with an ℓ—th derivative and integrate to get lower order derivatives

$\hat{\kappa}_n(t) = \frac{\|\alpha'_n(t) \times \alpha''_n(t)\|}{\|\alpha'_n(t)\|^3}$ is the curvature estimator
let $\alpha_n(t) = (\alpha_{1, n}(t), \alpha_{2, n}(t), \alpha_{3, n}(t))^\top$ be the fitted curve

define $\alpha_n^{(\ell)}(t) = (\alpha_{1, n}^{(\ell)}(t), \alpha_{2, n}^{(\ell)}(t), \alpha_{3, n}^{(\ell)}(t))^\top$ be the ℓ–th derivative

alternatively one may start with an ℓ–th derivative and integrate to get lower order derivatives

$\hat{\kappa}_n(t) = \frac{\|\alpha_n'(t) \times \alpha_n''(t)\|}{\|\alpha_n'(t)\|^3}$ is the curvature estimator

$\hat{\tau}_n(t) = -\frac{\langle \alpha_n'(t) \times \alpha_n''(t), \alpha_n'''(t) \rangle}{\|\alpha_n'(t) \times \alpha_n''(t)\|^2}$ is the torsion estimator
Knee data

Preliminaries
Curvature and Torsion
Statistical Estimation
Application to Biomechanics

Peter Kim
Frenet-Serret and the Estimation of Curvature and Torsion