Tuner - finding the best parameters for your algorithm

Torsten Möller
Graphics, Usability, and Visualization Lab
Simon Fraser University
Quiz - question 1

• “Each match must agree within 15 degrees orientation, $\sqrt{2}$ change in scale, and 0.2 times maximum model size in terms of location. If fewer than 3 points remain after discarding outliers, then the match is rejected.”

• Lowe, 1999, Object recognition from local scale-invariant features (SIFT)
Quiz - question 2

• “In our numerical experiments, we generally choose the parameters as follows: \(\lambda_1=\lambda_2=0, \nu=0, h=1\) (the step space), \(\Delta t=0.1\) (the time step). We only use the approximations \(H_{2,\varepsilon}\) and \(\delta_{2,\varepsilon}\) of the Heaviside and Dirac delta functions (\(\varepsilon=h=1\)), in order to automatically detect interior contours, and to insure the computation of a global minimizer. Only the length parameter \(\mu\), which has a scaling role, is not the same in all experiments.”

• Chan+Vese, 2001, Active contours without edges
Overview

• Problem setting
• Sampling multi-d spaces
• Exploring multi-d spaces
• Trading off multiple objectives
• Results
Problem Setting
Image segmentation

- many thresholds, e.g.
 - max vessel diameter
 - max vessel curvature, etc.
- variational / energy minimisation

\[E(\phi, I) = \alpha_1 E_1(\phi, I) + \alpha_2 E_2(\phi, I) + \ldots + \alpha_k E_k(\phi, I) \]
• abstracted (black-box) scheme:

\[\mathcal{R}^n \rightarrow f \rightarrow \mathcal{R}^m \]

Parameter Space \rightarrow segmentation algorithm \rightarrow Range

• we can tell \textbf{Inputs} from \textbf{Outputs}
• we can query this box / algorithm at every “point”
• abstracted (black-box) scheme:

\[\mathcal{R}^n \xrightarrow{f} \text{Segmented Image} \xrightarrow{d} \mathcal{R}^m \]

- Parameter Space
- segmentation algorithm
- Objective measures
- Range

- we can tell **Inputs** from **Outputs**
- we can query this box / algorithm at every “point”
Objective measure

- one-dimensional ("goodness") rating:
 \(d(\text{object}) = \text{quantitative grade} \)

- two-dimensional comparison:
 \(d(O_1, O_2) = \text{quantitative similarity} \)

- objective measures can be
 - exact (reliable)
 - approximate - about right, but not 100% precise
 - unknown (active learning)
in our case ...

- used (several) one-dimensional measures
 - dice
 - error
 - precision / recall

- need the user in the loop to find the best trade-off
We would like to ...

- sample the input space exhaustively
- explore / understand the space of all segmentations
- find the best segmentation (and its parameters)
Three challenges

- How to sample the input space exhaustively?
- How to explore / understand the space of all segmentations?
- How to find the best segmentation (and it's parameters)?
Sampling
Sampling

• trading-off time and accuracy
• time - would like to get an answer in less than a day (samples are expensive!)
• accuracy - would like to have as dense a sampling as possible
• typically reconstruct / infer values at non-sampled values from sampled neighbors
Common strategy

• user gives a sampling budget

• split into
 - uniform sampling at start
 - adaptively refine according to some refinement criteria
Our implementation

- 2 sampling strategies
 - Random
 - Latin Hypercube
- live preview
- estimate running time
Reconstruction

- Gaussian process model, i.e.
 - essentially a convolution with adapted kernel parameters
- refine where the user tells us to
Understanding the parameter space
Response Views

- Predicted Value
- Uncertainty
- Expected Gain

BIRS September 2011

gruvi graphics + usability + visualization

Torsten Möller
Histograms

- One histogram per output
- Glyph shows where point of focus lies w.r.t. optimum
- People didn’t really seem to use these
The best segmentation
Optimization: subtasks

- facilitate understanding of trade-offs
- applying constraints on (output) parameters
- refine sampling at potential optima
Pareto Panel

Setting Sampling Exploration Optima Results

BIRS September 2011

gruvi ☑ graphics + usability + visualization Torsten Möller
Mark the region of interest
Refinement

- identical interface to initial sampling
- clicking “Run” button runs samples through black box code
- GP model is automatically rebuilt
Results
Two scenarios

• 8d dPET image segmentation

• 3d microtubule tracing algorithm
Electron Microscopy

- Samples: eggs of C. Elegans during mitosis
- Preparation: Samples are dry frozen, stained, embedded in plastic and sectioned into ~300nm thick slices
- Image acquisition: Volume is reconstructed from a series of projections in different tilt angles taken with a transmission electron microscope (TEM)
Microtubule tracing

“No more making stupid plots”
Microtubule tracing
Summary

• principled way of exploring multi-d parameter space
• understanding trade-off of multiple objectives
• “This reduced the work of days to a couple of hours.”
• lots of things to improve!
• not everything is an optimization
Acknowledgments

Ahmed Saad
SFU

Britta Weber
Zuse I Berlin

Hans-Christian Hege
Zuse I Berlin

Jean-Marc Verbavatz
MPI-CBG Dresden

Thomas-Torsney Weir
SFU

Steven Bergner
SFU

BIRS September 2011

gruvi graphics + usability + visualization

Torsten Möller
early registration deadline - 16 September

20 papers + 27 abstracts

Visualization Challenge (focus on eQTL)
Deadline Sep 7th

Keynote by Lynda Chin

Invited Session by Arthur Olson, Cydney Nielsen, Willy Supatto

Tutorial by Larry Hunter, Kun Huang
Questions?

torsten@sfu.ca

http://gruvi.cs.sfu.ca