Hierarchical Feature Matching for Shape Analysis

Ross Whitaker BIRS – Aug 2011

Some Recent Work

- Suppose we have lots of examples (images/ shapes)
 - **-** 100s **-** 1000s

- Opportunities
 - Possibly <u>learn</u> important shape characteristics
 - Chance of finding similar shapes as needed
- Challenges
 - Making systematic use of so much data
 - Quickly finding what you want

The Talk I Had Planned

- 1. Statistics of ensembles for shape correspondence (Cates, Datar)
- 2. Learning manifolds of large collections of brain images (Gerber)
- Hierarchical feature-based shape matching for fast neighbor lookup (Zhu)

This Talk

Ensemble-Based Shape Correspondence

Mean shape: LacZ -/-

Wild Type

Learned Manifolds of Brain Images

Some Observations

- Shape analysis hinges on "correspondence"
- Shapes <u>similar</u> => correspondence <u>easy</u>
 - Shapes very <u>different</u> => <u>hard</u> (optimization)
- Ensembles help with correspondence
 - Statistical models regularize/constrain problem
 - Rely on nearest neighbors in shape space
- Roadblocks to analysis
 - Getting data into the correct "framework"
 - Optimizations and lack of generality

Shape Representations

Bipartite Matching

* Find the matches that minimize L1 norm

$$C(X,Y) = \min_{\pi} (|X - \pi Y|)$$

 L1 is agnostic about certain correspondences

Pyramid Matching

Pyramid Matching

Form a multiresolution set of histograms (of features)

$$\Psi(\mathbf{X}) = [H_0(\mathbf{X}), \dots, H_{L-1}(\mathbf{X})]$$

* Pyramid match distance/similarity $\mathcal{P}_{\Delta}\left(\Psi(\mathbf{Y}),\Psi(\mathbf{Z})
ight) = \sum_{i=0}^{L-1} w_i N_{i_i}$

• N_i is number of matches at each level

 $\mathcal{I}(\mathbf{A}, \mathbf{B}) = \sum_{j=1}^{r} \min\left(\mathbf{A}^{(j)}, \mathbf{B}^{(j)}\right) \qquad N_i = \mathcal{I}\left(H_i(\mathbf{Y}), H_i(\mathbf{Z})\right) - \mathcal{I}\left(H_{i-1}(\mathbf{Y}), H_{i-1}(\mathbf{Z})\right)$

Cost/distance vs similarity

$$w_i = d2^i \quad w_i = \frac{1}{d2^i}$$

Pyramid Matching

- Form a multiresolution set of histograms (of feature sets A and B) $\begin{array}{l}H(A) = [h_1(A), h_2(A), \dots, h_L(A)]\\H(B) = [h_1(B), h_2(B), \dots, h_L(B)]\end{array}$ Bin size $\frac{1}{d2^l}$
- Pyramid match distance/similarit*

$$\kappa(A,B) = \sum_{l=1}^{L} w_l N_l$$

N_i is number of matches at each level

 $N_{l}(A,B) = I_{l}(A,B) - I_{l-1}(A,B) \quad I_{l}(A,B) = \sum_{\text{bins i}} \min\left(h_{l}^{(i)}(A), h_{l}^{(i)}(B)\right)$

Cost/distance vs similarity

$$w_i = d2^i \quad w_i = \frac{1}{d2^i}$$

Pyramid Match Kernels Grauman 2006

- The distance case approximates L1 (expected)
- Distance case -> metric
- Similarity case -> Mercer kernel
 - Also robust to outliers/mismatches
- Technicalities
 - How to deal with different numbers of features
 - Should be "normalized"
- Use x-y coordinates and coded features
 - SPM, Lazebnik 2006

Some Experiments

- Random points from circles/ellipses
- Up to 15% random points (mismatches)
- Kernels moderately robust (distinguish shapes)
- Distance less so...

12

Image Segmentation How to Choose a Template?

- Single individual? Not general
- Average of whole population? Too general
- Choose a set of segmented images that

Choosing Similar Templates

 Nonparametric estimators on the space of objects [Depa, et al. 2010]

Challenge

- Given (potentially) thousands or millions of examples, how do we find the most similar images (shape)?
- * Zhu, et al., MICCAI 2011
 - Use spm as an approximate, fast shape "lookup" for very large sets of examples
 - Strategy: (i) Features (ii) Codebooks (iii) SPM for shape similarity

Nearest Neighbor Lookup (Brains)

Nearest Neighbor Lookup Segmentation Performance

Tissue classification

	k-NN Accuracy								diffeo	ΙΙ	T I	ŦŦ
	$ Diff_1 $	Diff_2	$Elas_1$	$Elas_2$	SPM_1	SPM_6	SPM_{18}	0.	⁸ elastic			
Diff_1	1	0.39	0.22	0.35	0.25	0.32	0.32		spm			
Diff_2		1	0.51	0.69	0.45	0.53	0.53	0.7	5 rand			
$Elas_1$			1	0.45	0.36	0.36	0.36	ţd.				
$Elas_2$				1	0.42	0.52	0.53	Ē.	-			
SPM_1					1	0.56	0.52	.୦.	(
SPM_6						1	0.86	Ē				
SPM_{18}							1	දී 0.6	5			
Average ϵ -Ball Radius Ratio								Ō				
	$ Diff_1 $	Diff_2	$Elas_1$	$Elas_2$	SPM_1	SPM_6	SPM_{18}	0.	a			
Diff_1	1	1.24	1.30	1.25	1.38	1.33	1.32					
Diff_2	1.26	1	1.20	1.16	1.33	1.29	1.26					
$Elas_1$	1.29	1.19	1	1.23	1.29	1.27	1.27	0.5	CSE	GM		WM
$Elast_2$	1.13	1.07	1.10	1	1.12	1.09	1.09		001	Tissue Type		¥ 9 I WI

Another Example

- Head/neck CT for radiation treatment
- Can we reuse old segmentations?
 - E.g. from large database

Experiment - 10 Scans

Good Match

Bad Match

Speed Is Important

- * Floating point operations (est. for vol)
 - $LDDM 10^{13}$
 - Elastic registration 10¹¹
 - $SPM 10^8$
- Can we do more with this representation?
 - E.g. statistics