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Representations of finite groups
Let G be a finite group, K a field (large enough).
Aims:
e Classify irreducible (and indecomposable) representations

p: G — GL(V), V a finite dimensional K-vector space.

@ Decompose representations into irreducible ones.

@ Understand relations between representations.

Ordinary representation theory: Char K =0 or Char K { |G|
p-modular representation theory: Char K = p | |G|



Ordinary and modular theory: p-blocks of characters

Forx € G: x¢ =3} _ cy, the class sum to x.
The set of class sums is a basis of Z(CG).

The central character w, : Z(CG) = C tox € Irrc(G):

2 _ IxXChx(x)

W, (xC for all x € G.
x(x®) x(1)

Then wx()/(E) € R = the ring of algebraic integers..

Let p be a prime, p € p maximal ideal of R. Let X,V € Irre(G).

o~

X~p & wx(;E) = wy(x®) modyp VxeG

The ~, equivalence classes are the p-blocks of G.
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Central characters of Sg
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Modulo 3:
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Modulo 3:
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3-blocks of Ss
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3-blocks of Ss

cycle type || 15 | 132 [ 123 | 14| 122 | 23| 5

length || 1] 10] 20] 30| 15| 20| 24

Bl 1] 1] 1| 1] 1| 1] 1

411 4| 2| 1| o] 0|—-1]-1

32]|| 5| 1| —-1|—=1| 1| 1| 0

311l 6| 0| O -2 0] 1
21| 51| —1| 1| 1]|-1

213 4| -2 1| o 0| 1|-1

m°1 1| =1 1|—-1| 1|-1| 1

p-blocks of defect 0 (p-cores)
Let x € Irrc(G); then: {x}is a p-block & x(1), =|Gl, .
In this case: x(x) = 0 for all p-singular x € G.



Characters and group structure

Applications of block theory: classification of finite simple groups.

Let p be a prime.
A finite group G is p-nilpotent, if it has a normal subgroup N

such that ptIN| and G/N is a p-group.

Example. S3 is 2-nilpotent, but not 3-nilpotent.

Theorem (Thompson 1970)
If p|x(1), for all non-linear x € lrrc(G), then G is p-nilpotent.



Characters and block structure

Generalization of p-nilpotent groups: nilpotent p-blocks.
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Conjecture (Malle-Navarro)

The p-block B of G is nilpotent if and only if all x € B of height 0
have the same degree.




Characters and block structure

Generalization of p-nilpotent groups: nilpotent p-blocks.
We say that x € B is of height 0 if x(1), = qr;nigﬂ‘)(l)p'
€

Conjecture (Malle-Navarro)

The p-block B of G is nilpotent if and only if all x € B of height 0
have the same degree.

Theorem (Malle-Navarro 2011)

Let G be quasi-simple, B a p-block which is neither a spin block of
the double cover of the alternating group, nor a quasi-isolated
block of an exceptional group of Lie type for p a bad prime.

Then the conjecture holds for B.




For the symmetric groups and a prime p:
p-blocks < p-core partitions
Degree computation for irreducible characters:

hook formula

Malle-Navarro: not adequate for the purpose ...

New relative degree formula:
factor the character degrees along their p-core degrees.



The Hook Formula

Theorem (Frame, Robinson, Thrall 1954)

Let [[H(A) be the product of all hook lengths in A & n. Then

Let A = (5,4,4,2,2) I 17.

= 1.361.360

9[8]5[4][1] -

716[3]2 Al(1) = :

6/5/2]1 A 9-8-5-4.1.7-6-3-2:6-5-2-1.3:2:2:1
3[2

2]1




d-cores

Let d € N. For a partition A, denote by A, its d-core,
obtained by removing as many d-hooks as possible.

Example
Let d =5, A = (5,4,4,2,2) - 17. Then A5 = (3,1,1,1,1):

9[8]5]4][1] 5[4[3]1] 2[1]
716[3]2 3[2]1

6[5/2]1

3]2

2]1

‘n—n‘m‘w\l ©

Removal process may be described by the d-quotient Al4), a
d-tuple of partitions.



d-cores

Let d € N. For a partition A, denote by A, its d-core,
obtained by removing as many d-hooks as possible.

Example
Let d =5, A = (5,4,4,2,2) - 17. Then A5 = (3,1,1,1,1):

9[8]5]4][1] 5[4[3]1] 2[1]
716[3]2 3[2]1

6[5/2]1

3]2

2]1

‘n—n‘m‘w\l ©

Removal process may be described by the d-quotient Al4), a
d-tuple of partitions.

Remark. [A] is of height 0 & [A](1), = [A(p)](1)p = [A(p)p-



Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, A= n, Ap) = r. Let S be a symbol associated to
the p-quotient AP), b; the number of beads on the it" runner of
the p-abacus for A, ¢; = pb; +i—1. Then

n! 1
rl Hh hook of S |p€(h) + Cith) — Cj(h)|

Al(1) = A1) .

v

Note on the proof: In his work on unipotent character degrees of
general linear groups (1995), Malle used p-symbols as labels,
defined hooks (and associated lengths) in p-symbols and proved a
‘hook formula’ for the unipotent degrees. Its specialization at

g = 1 is crucial for the relative degree formula.
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Theorem (Malle-Navarro: relative degree formula)

Let p be a prime, A= n, Ap) = r. Let S be a symbol associated to
the p-quotient AP), b; the number of beads on the it" runner of
the p-abacus for A, ¢; = pb; +i—1. Then

n! 1
rl Hh hook of S |p€(h) + Cith) — Cj(h)|

Al(1) = A1) .

Note on the proof: In his work on unipotent character degrees of
general linear groups (1995), Malle used p-symbols as labels,
defined hooks (and associated lengths) in p-symbols and proved a
‘hook formula’ for the unipotent degrees. Its specialization at

g = 1 is crucial for the relative degree formula.

Suspicion: This is the classical hook formula in disguise.
B.-Gramain-Olsson: Generalized hook lengths in symbols and
partitions, arXiv 1101.5067



Useful tool: 3-sets

Any finite subset X ={a1,...,as}> of Ny is a B-set.

This is a -set for the partition A = p(X) with parts the positive
numbers among
ai—(s—1i),i=1,...,s.



Useful tool: 3-sets

Any finite subset X ={a1,...,as}> of Ny is a B-set.
This is a -set for the partition A = p(X) with parts the positive
numbers among
ai—(s—1i),i=1,...,s.
o For the shifts X"k ={a+k|ac XIU{k—1,...,1,0}
we have: p(X) = p(Xtk).
@ The set of first column hook lengths of A is a [3-set for A.



Useful tool: 3-sets

Any finite subset X ={a1,...,as}> of Ny is a B-set.

This is a -set for the partition A = p(X) with parts the positive
numbers among
ai—(s—1i),i=1,...,s.

o For the shifts X"k ={a+k|ac XIU{k—1,...,1,0}
we have: p(X) = p(Xtk).

@ The set of first column hook lengths of A is a [3-set for A.
A d-hook of X is a pair (a, b) € N3 with
aeX,b<a bgXanda—b=d.

Removal of this d-hook from X: replace a by b
(<> removal of a d-hook from A = p(X)).



The d-abacus

Place the elements of X as beads on an abacus with d runners!

X ={11,8,6,2,0}is a B-set of p(X) =A = (7,5,4,1) - 17.
Fix d = 3. The 3-abacus representation for X and its 3-core:

0 1 2
3 4 5
6 7 8
9 10 11




The d-abacus

Place the elements of X as beads on an abacus with d runners!

X ={11,8,6,2,0}is a B-set of p(X) =A = (7,5,4,1) - 17.
Fix d = 3. The 3-abacus representation for X and its 3-core:

0 1 2 0 1 2
3 4 5 3 4 5
6 7 8 6 7 8
9 10 11 9 10 11

3-core C3(X) ={8,5,3,2,0}
C3(X) = p(C3(X)) = p({8,5,3,2, O}) = (4>2> 1, 1) = 7\(3)




The d-abacus

Place the elements of X as beads on an abacus with d runners!

X ={11,8,6,2,0}is a B-set of p(X) =A = (7,5,4,1) - 17.
Fix d = 3. The 3-abacus representation for X and its 3-core:

0 1 2 0 1 2
3 4 5 3 4 5
6 7 8 6 7 8
9 10 11 9 10 11

3-core C3(X) ={8,5,3,2,0}
C3(X) = p(C3(X)) = p({8,5,3,2,0}) = (4>2> 1, 1) = 7\(3)

Remarks.
@ Easy computation of d-core.
@ d-core independent of removal process!



d-symbols

A d-symbol is a d-tuple of B-sets S = (Xp,..., Xg_1).
We have a bijection
sq: {P-sets} — {d-symbols}

d d
X = (X9 x9N,

where XY ={k € No | kd +j € X}, j=0,...,d — 1.
A hook of S: (a, b, i,j) € N& with i,j €{0,...,d — 1},
ac X;, bZ X;, and either a> b, or a=b and i > j.
H(S) = the set of all hooks of S.



d-symbols

A d-symbol is a d-tuple of B-sets S = (Xp,..., Xg_1).
We have a bijection

sq: {P-sets} — {d-symbols}

d d
X = (X9 x9N,

where XY ={k € No | kd +j € X}, j=0,...,d — 1.

A hook of S: (a, b, i,j) € N§ with i,j € {0,...,d — 1},
ac X;, bZ X;, and either a> b, or a=b and i > j.

H(S) = the set of all hooks of S.

Remark. There are canonical bijections between the hooks in X,
A=p(X)and S = s4(X).



Example
B-set X = {11,8,6,2,0} for p(X) = A = (7,5,4,1) I 17.
Let d = 3; 3-abacus representation for X and S = s3(X):

0o 1 2 0 1 2
0o 1 2 0 0O
3:3 4 5 — 1 1 1
6 7 8 2 2 2
9 10 11 3 3 3

S= ({2)0})®){3)2)0})
Example: hook (11,4) in X < hook (3,1,2,1) in S.




Balanced quotients

Let S = (Xo,...,Xg_1) be a d-symbol.
S is balanced, if |[Xg|=...=|Xy_1| and 0 &€ X; for some i.
The balanced quotient of S is the unique balanced d-symbol
Q(S) = (Xgy ..., Xj_1) with p(X/) = p(X;) for all i.
The core of S is the d-symbol C(S) with ith component
{Xil—1,...,1,0}, i=0,...,d —1.
If X = 551(5), the balanced d-quotient of X is the 3-set
Qu(X) = 5,1(Q(S))
and the d-quotient partition of A = p(X) is
q4(X) = p(Qq(X)) .



Example

Let S =s3(X) = ({2,0},0,{3,2,0}).

Associated partitions:  ((1),0, (1,1)).

Balanced quotient of S:  Q(S) = ({2,0},{1, 0},{2, 1}).

0 0 O 0o 1 2
1 1 5! 3 4 5
3 3 3 9 10 11

q3(X) = ,D(Q3(X)) = p({8,6,5,4,1,0}) = (3)2>2>2)

Note: |g3(X)| + |c3(X)| =9+ 8 =17 =[p(X)].




Connections between a [3-set X, its associated d-symbol
S = 54(X) and associated partition A = p(X):

Note that g4(X) is not the usual d-quotient for Al



What are we trying to do about the relative degree formula?

Example
As before: A =(7,5,4,1), X ={11,8,6,2,0}, d = 3.
S= ({2>0})®){372)0})1 (XO)Xl»X2) = (2)0) 3)

3-core and 3-quotient partitions to A:

Az =(4,2,1,1), g3s(X) =(3,2,2,2).
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What are we trying to do about the relative degree formula?

Example
As before: A =(7,5,4,1), X ={11,8,6,2,0}, d = 3.
S= ({2>0})®){372)0})1 (XO)Xl»X2) = (2)0) 3)

3-core and 3-quotient partitions to A:

Az =(4,2,1,1), g3s(X) =(3,2,2,2).

Hook diagrams for A, A(3):
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What are we trying to do about the relative degree formula?

Example
As before: A = (7,5,4,1), X ={11,8,6,2,0}, d = 3.
Si= ({2> 0}3 @) {3) 2) 0}). (XO) X1, X2) = (23 Oa 3)

3-core and 3-quotient partitions to A:

Ag) =(4,2,1,1), g3(X) = (3,2,2,2) .

Hook diagrams for A, g3(X):

—
o

4 2 1
1

— o1~

w o1

N AN

= W O
o

N W S~ O

= N W Ol




Let S = (Xo,...,Xq_1) be a d-symbol.
We consider only the hooks between runners i and j:

HIJ(S) = {(3» b, ia./.) | (av b, i».j) € H(S)}v
H{,-J-}(S) = H,J(S) U Hj,'(S) .

For £ > 0 we define the {-level section

HL(S) = {(a, by i\j) € Hy(S) | a—b=1}.



Hook correspondence in symbols

Theorem

Let S be a d-symbol with balanced quotient Q and core C.
For all i, j, we have bijective multiset correspondences

Hin(S) — Hip(Q) U Hyp(C)

with control on the level sections.
We glue these bijections together to a universal bijection

ws:H(S) = HQ)UH(C).

Remark. For S = (X, ..., Xq-1), the differences [X;| — |X]| are
crucial for controlling the correspondence of the level sections.



Theorem. Let S, Q, C be as above, i #j, A =|X;| —|Xj| > 0.

When A > 0, we have the following equalities:

e For all £ > A: [H(S) = |H; 2(Q).

o For all £ > A: |HA(S)| = |H(Q)I.

e For all 0 < £ < A: |H}(S)| = IH Y (Q)I + [H§(C)I.

IHAQ)| = [H2,(Q)] ifi>j

For 0 =A: [HMS) =13 .0 o PR

» Fort=AHGSI=0 o) = M8, (@)1 i i <

e For { =0: o
[HY(S) = [HQ,(S)] if i > j
A 0 _ ij {u}
'”ﬂ(Q”*'HU(C”—{ IHA(S) = HO, (S if i<
o [HF () +H, () = [HZF(Q)] + IHD; (@) + [H(C)I.
When A =0, we have
° |Hfj(5)| = IH,-EJ-(Q)I, H,-ej(C) =, for all £ > 0.

{ij}
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000000 0O OO OO
0000000000000 00

000000 0O OO
0000000000000

00000000 0000000
00000 00000 000




9000000000000
9000000000000 0

9000000000000
0000000000000 00

A



900000000 0000000
90000000000 OO0
90000000000 0000
00000 0000000000

A



9000000000000
0000000 00 0G0
>0
9000000000000
00000000000 0000

~—_———
A > A



900000000000 0O0OO
9000000000 0000

9000000000000
0000000000 0 00

A (<A (<A



9000000000 OBOOOO
9000000000000

9000000000000
0000000000 0 00

A (<A (<A



00000000 © © 000 -
0000000000 :0:000
1 0000000000000000 -
00000000000 0 00 -

A (<A (<A



00000000 © © 000 -
0000000000 :0:000
000 000000000000 -
00000000000 .0 00 -

(<A (<A



Let H={(a,byi,j)la>bandi>jif a=hb}.

Consider (generalized) hook length functions h: H — R s.t.
the value h(a, b, /,j) depends only on { = a— b, i and ;.



Let H={(a,byi,j)la>bandi>jif a=hb}.

Consider (generalized) hook length functions h: H — R s.t.
the value h(a, b, /,j) depends only on { = a— b, i and ;.

Important hook length functions for d-symbols:
d-hook data tuple:
d=(co,Cly---yCqd-1;k), COy---yCd—1,k ER, k> 0.

d-length of (a, b,i,j) € H:
h®(a, b, i,j) = k(a—b) + ¢; — ¢; .
For any d-symbol S, the multiset of generalized hook lengths is
HO(S) ={h°(a, b,i,j) | (a,b,i,j) € H(S)}



Important special choices for applications:
e 6=(0,1,...,d — 1;d) the partition d-hook data tuple.

Then the 6-length of a hook of S equals the usual hook
length a — b of the corresponding hook (a, b) of X.

e 6=(0,0,...,0;1) the minimal d-hook data tuple.

Then the d-length of long hooks (a > b) in S coincides with
the hook length in symbols as defined by Malle, and the short
hooks (a = b) have 6-length 0.



The Meta-Theorem

Theorem
Let S = (Xo,Xl, .. -de—l) be a d-symbol, x; = |XGil.

Let Q be its balanced quotient, C be its core.

Let &6 = (co, C1y...,Cq_1; k) be a d-hook data tuple, and set
d0s = (co + xok, c1 + x1ky ...y Cqg—1 + xg_1k; k).

Then we have the multiset equality
H'(S) = H(C)UA*(Q),

where  H*(Q) ={R*(2) | z € H(Q)}
is the multiset of all modified b6s-lengths of hooks in Q.




Modified hook lengths
We assume that i,/ are such that A = x; — x; > 0.

Let H,S- ={(a,byi,j) e Hla—b=1}.
Then for z € H{,-J-} we define

B h®s (z) iszH,-jUH;A, orzEHﬁifi<j

—bs
(2) = { —h%s(z) otherwise

h

Crucial property w.r.t. the universal bijection wg:

B (2) = R(ws(z)) if ws(z) € H(C)
S (ws(z)) if ws(z) € HQ)



Application for partitions

Let d € N, A a partition, X a [3-set for A\, x; = |X,.(d)|.
Let g4(X) be the d-quotient partition of X.

For z € H(q4(X)) with hand and foot d-residue i and j + 1,
respectively, let

h(z) = h(z) + (x; — x;)d .
Let H(qq(X)) be the multiset of all h(z), z € H(qq(X)).

Then we have the multiset equality

H(A) = H(A(g)) Uabs(H(qa(X))

where abs(H(qa(X)) ={Iml | m € H(qq(X))}.




Application for partitions

Let d € N, A a partition, X a [3-set for A\, x; = |X,.(d)|.
Let g4(X) be the d-quotient partition of X.

For z € H(q4(X)) with hand and foot d-residue i and j + 1,
respectively, let

h(z) = h(z) + (x; — x;)d .
Let H(qq(X)) be the multiset of all h(z), z € H(qq(X)).

Then we have the multiset equality

H(A) = H(A(g)) Uabs(H(qa(X))

where abs(H(qa(X)) ={Iml | m € H(qq(X))}.

Corollary Generalization of the Malle-Navarro formula.
In particular, the Malle-Navarro formula is the hook formula!



Example
As before: A =(7,5,4,1), X ={11,8,6,2,0}, d = 3.

S= ({2>0}a®){3>2,0})v (X0>X1>X2) = (2a0) 3)

3-core and 3-quotient partitions to A:

Az = (4,2,1,1), g3(X) = (3,2,2,2).

Hook diagrams for A, A3, q3(X):

10 8 7 6 4 2 1 7 4 2 1 6 5 1
7 5 4 31 4 1 4 3
5 3 2 1 2 3 2
1 1 2 1




Hook diagrams for A, g3(X):

<]

10 8 7 6 4 2 1

oM AN

< o AN

7 5 4 31
2



Hook diagrams for A, g3(X):

—
o

4 2 1
1

— o~
w o1 o
N AN
—= W o

Consider the 3-residue diagram of g3(X).

O = N O
=N O -

N W s~ O

= N W ol



Hook diagrams for A, g3(X):

10 876 4 2 1 6 5 1
7 5 4 3 1 , 4 3
5 3 2 1 — 3 2
1 2 1

Modify the length of each hook in g3(X) by 3(x; — x;) according
to residues / and j + 1 of its hand and foot.

=N O N~

N O = DN O
S|~ N O R




Hook diagrams for A, g3(X):

10 876 4 2 1 6 5 1
7 5 4 3 1 , 4 3
5 3 2 1 — 3 2
1 2 1

Modify the length of each hook in g3(X) by 3(x; — x;) according
to residues / and j + 1 of its hand and foot.
Recall: (xg, x1,x2) = (2,0, 3).

i |
0 1 2|2 3\ 9[-9 —6 0
> o e 9 6 5 1
D I 6 4 3
b 9 3 2
T2 01 0 2 1




Hook diagrams for A, g3(X):

—
o

4 21
1

— o1~
w o1
N B
= W o
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Modify the length of each hook in g3(X) by 3(x; — x;) according
to residues / and j + 1 of its hand and foot.
Recall: (xg, x1,x2) = (2,0, 3).
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Finally, take absolute values!
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Generalizations

Symbols were introduced by Lusztig (1977) as labels for characters
of classical groups; generalized notions of {-cores, ({, e)-cores etc.
for symbols.



Generalizations

Symbols were introduced by Lusztig (1977) as labels for characters
of classical groups; generalized notions of {-cores, ({, e)-cores etc.
for symbols.

Theorem

Let S = (Xp, X1y...,X4_1) be a d-symbol, 5 = (0,...,0;1), £ € N.
Let C be the {-core and Q the balanced {-quotient of S.
Then we have a multiset equality for the d-lengths of hooks in S:

HY(S) = HP(C) U abs(H45(Q))

where abs(H%t5(Q)) is the multiset of all |h®tS(z)|, z € H(Q),
d¢,s a modified d{-hook data tuple.




