Kostant partition functions and flow polytopes of signed graphs

Karola Mészáros Alejandro H. Morales MIT

May 20, 2011

Flow polytopes of signed graphs

Example

A nonnegative integer flow with excess flow vector $\mathbf{a} = (6, 1, 3, -2)$

The flow polytope $\mathcal{F}_G(\mathbf{a})$ associated to the signed graph G and excess flow vector \mathbf{a} is the set of all \mathbf{a} -flows $f: E \to \mathbb{R}_{>0}$.

The Kostant partition function of a signed graph G

 $K_G(\mathbf{v})$ is the number of ways to write the vector \mathbf{v} as a nonnegative integer linear combination of the positive type C_n roots corresponding to the edges of G, without regard to order.

Example

$$K_G(e_1+3e_2)=2$$
, since $e_1+3e_2=(e_1+e_2)+(2e_2)=(e_1-e_2)+2(2e_2)$.

Kostant partition functions and flow polytopes

The number of vertices of $\mathcal{F}_{G}(\mathbf{a})$ equals the Kostant partition function $K_{G}(\mathbf{a})$, for the special vectors $\mathbf{a} \in \{(2,0,\ldots,0), (1,1,0,\ldots,0), (1,0,\ldots,0), (1,0,\ldots,0,-1), (1,0,\ldots,0,-1,0,\ldots,0)\}$

Ehrhart polynomial: $L_{\mathcal{F}_G(\mathbf{a})}(t) = K_G(t\mathbf{a})$

The volume of $\mathcal{F}_G(\mathbf{a})$ is also expressed in terms of Kostant partition functions. However, regardless of whether the graph is signed or not, the volume is expressed in terms of type A_n Kostant partition functions!

Volumes of flow polytopes: only negative edges

Theorem 1 (Postnikov-Stanley)

G graph with negative edges,

$$vol(\mathcal{F}_G(e_1 - e_{n+1}) = K_G(0, d_2, ..., d_n, -\sum_{i=2}^n d_i), \text{ where } d_i = indeg_G(i) - 1 \text{ for } i \in \{2, ..., n\}.$$

Example

Volume flow polytope $\mathcal{F}_G(1,0,0,-1)$ for

$$=$$
 # of flows on $\frac{1}{3}$

Volumes of flow polytopes: signed graphs

Theorem 2

G signed graph, $\operatorname{vol}(\mathcal{F}_G(2e_1) = K_G^{dynamic}(0, d_2, \dots, d_n, -\sum_{i=2}^n d_i)$, where $d_i = indeg_G(i) - 1$ for $i \in \{2, \dots, n\}$.

Example

Volume flow polytope $\mathcal{F}_G(2,0,0,0)$ for

=# of dynamic flows on

Reduction rules

Subdivison of Flow polytopes I/III: noncrossing trees

We use the **reduction rules** for signed graphs to subdivide flow polytopes. Subdivisions are indexed by signed bipartite non-crossing trees (*i.e.* signed compositions):

Subdivison of Flow polytopes II/III: Removing vertex from signed graph G

Replace incident edges of vertex 2 in G by a noncrossing tree T_2

Subdivision of Flow polytopes III/III: Descending order and Main Subdivision Lemma

We use the following order for subdivision: selected edges are **bold**

Lemma

Let G be a signed graph, vertex set [n+1], $\mathcal{F}_G(\mathbf{a})$ be its flow polytope. If $\mathbf{a}_i = 0$, using **reduction rules** to edges incident to i in the order **above**, the polytope **decomposes** as:

$$\mathcal{F}_G(\mathbf{a}) = \bigcup_{\substack{T \text{ at-least-PNP trees}}} \mathcal{F}_{G_T^{(i)}}(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n, 2y - \sum a_i),$$

Example of the Lemma

Three outcomes ✓ indexed by bipartite trees:

Using the Lemma to prove Theorem 1

Example of the subdivision to compute the volume of $\mathcal{F}_G(1,0,0,-1)$ for a graph G with only negative edges.

Using the Lemma to prove Theorem 2

Example of the subdivision to compute the volume of $\mathcal{F}_G(2,0,0,0)$ for a signed graph G.

$$T_{3(0^+,1^-)}$$

$$T_{4(2^+,0^+)}$$

