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Partitions

A partition is a weakly decreasing sequence of positive integers
of finite length.
The Young diagram of the partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λk ) is
a diagram with a left-justified array of λ1 boxes in row 1, λ2
boxes in row 2, etc.

λ = (5,3,3,2) has Young diagram

|λ| = # of boxes =
∑

i λi = 13.

2/41



Representation theory of Sd where d = |λ|.

Partitions index the irreps over Q. You can use them to
construct the irreps—they encode a wealth of information.
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Hooks

8 7 5 2 1
5 4 2
4 3 1
2 1

◦ ◦ ◦
◦
◦

×
× ×

× ×
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Rim-hooks

×
× ×

× ×

× × × ×
× ×
× ×

× ×
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n-cores

An n-core is an integer partition λ such that n - hij for all boxes
(i , j) in λ.

1 2
1

2 1 4 1
2
1

5 2 1
2
1

Some 3-cores. Boxes contain their hook numbers.
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If you successively remove all n-rim-hooks, you are left with an
n-core. d = wn + |core|
Independent of order removed.

If p is prime and λ is a p-core, the irrep corresponding to λ is
still irreducible and projective over Fp.
(If n is not prime, use Hecke algebra at an nth root of unity.)

p-cores are the matrix algebras when you decompose the
group algebra into “blocks:"
FpSd =

∏
i Bi . Bi = Mf (Fp).

Otherwise, many irreps can belong to the same block.
The blocks are indexed by p-cores.
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The affine symmetric group Ŝn acts on {n-cores}.

In fact, Ŝn acts on all partitions and the orbit Ŝn · ∅ = {n-cores}.

All their corresponding blocks are matrix algebras over Fp, and
so Morita equivalent. This is part of a larger story of
Chuang-Rouquier who show blocks in the same orbit are
derived equivalent.

This is also part of the larger story whereby the {n-cores} are
the extremal vectors in a highest weight crystal for ŝln.
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Ŝn acts on n-cores

The box in row i, column j has residue j − i mod n.

0 1 2 3 0 1
3 0 1

n = 4

sk acts on the n-core λ by removing/adding all boxes with
residue k

The residues encode information about the central character
and more specifically how a large commutative subalgebra
acts.
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Ŝn acts on n-cores

n = 5

0 1 2 3 4 0 1 2
4 0 1 2
3 4 0
2
1
0

0 1 2 3 4 0 1 2 3
4 0 1 2 3
3 4 0
2 3
1
0

s3
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Ŝn acts on n-cores

n = 5

0 1 2 3 4 0 1 2
4 0 1 2
3 4 0
2
1
0

0 1 2 3 4 0 1 2
4 0 1 2
3 4 0
2
1
0

s0
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Ŝn acts on cores

∅

n = 3

0
0

1

2

0 1

2

0
2

1

0 1 2
2

0

1

0

2

0 1
2
1

0 1 2 0
2 0

0 1 2
2
1

0 1
2 0
1
0

0 1 2 0 1
2 0 1
1

1

0

2

0 1 2 0
2 0
1
0

0 1 2
2 0
1 2
0
2
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The affine symmetric group

The affine symmetric group, denoted Ŝn, is defined as

Ŝn = 〈s1, . . . , sn−1, s0 | s2
i = 1, sisj = sjsi if i 6≡ j ± 1 mod n,

sisjsi = sjsisj if i ≡ j ± 1 mod n〉

for n > 2, and Ŝ2 = 〈s1, s0 | s2
i = 1〉.

The affine symmetric group contains the symmetric group Sn
as a subgroup. Sn is the subgroup generated by the si ,
0 < i < n.
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w ∈ Sn ⇐⇒ w · ∅ = ∅

∅ 0
s0

Ŝn · ∅ = {n-cores} ' Ŝn/Sn.
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Ŝn acts by affine transformations

si = reflection over hyperplane {xi = xi+1} =: Hαi ,0.
V = {(x1, . . . , xn) ∈ Rn | x1 + . . .+ xn = 0} ⊆ Rn

s0 = affine reflection over hyperplane {x1 − xn = 1} =: Hθ,1.

w ∈ Sn ⇐⇒ w · (0,0, . . . ,0) = (0,0, . . . ,0)
orbit Ŝn · (0,0, . . . ,0) ' Ŝn/Sn.

Ŝn · (0,0, . . . ,0) = root lattice = Q =
⊕

i Zαi , where
αi = (0, . . . , 1,−1︸ ︷︷ ︸

i i+1

, . . . ,0) are the simple roots.

15/41



Notation

αij = α1 + · · ·αj−1 ∈ V , where 1 ≤ i ≤ j ≤ n are the positive
roots.

θ = α1 + · · ·+ αn−1 = (1,0, . . . ,0,−1) is the highest root

Hα,k = {x ∈ V |〈x | α〉 = k}, H+
α,k = {x ∈ V |〈x | α〉 ≥ k}
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Roots and hyperplanes n = 3

α1

α2

θ

Hα1,0

Hα2,0

Hθ,0

The roots α1, α2, and θ and their reflecting hyperplanes.

17/41



Hα1,0 Hα1,1 Hα1,2Hα1,−1

Hα2,0

Hα2,1

Hα2,2

Hα2,−1

Hθ,0 Hθ,1 Hθ,2Hθ,−1
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Alcoves
Each connected component of V \

⋃
αij 1≤i≤j≤n−1

k∈Z
Hαij ,k is called

an alcove.

A0

The fundamental alcove A0 is yellow.
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Ŝn acts on alcoves

si reflects over Hαi ,0 for 1 ≤ i ≤ 0 and s0 reflects over Hθ,1.

s1
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Bijection n-cores to alcoves

∅

Certain statistics on partitions λ = w · ∅ correspond to linear
equations or inequalities satisfied by lattice points w · (0, . . . ,0)
or more precisely alcoves w · A0.
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Bijection alcoves to alcoves

w · A0 ↔ w−1A0
The orbit of A0 under minimal length right representatives

w ∈ Sn\Ŝn is the dominant chamber.
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∅
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n-cores to dominant alcoves

∅
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All n-cores which are also t-cores

Above shows n = 3, t = 5 = mn − 1.
Below shows n = 3, t = 7 = mn + 1.

∅
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In 20021, Jaclyn Anderson showed that there are 1
n+t

(n+t
n

)
partitions which are both n-cores and t-cores when n and t are
relatively prime.

There are extended Catalan number = Cnm partitions which are
simultaneously n-cores and (nm + 1)-cores, the same as the
number of dominant Shi regions.

Take the “minimal" alcove in each region.

The partitions which are simultaneously n-cores and
(nm − 1)-cores are in bijection with the bounded dominant Shi
regions.
Take the “maximal" alcove in each region.

1“Partitions which are simultaneously t1- and t2-core”, Discrete
Mathematics
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Extended Shi arrangement

For any positive integers n and m, the extended Shi
arrangement is

{Hαij ,k |k ∈ Z, −m < k ≤ m and 1 ≤ i ≤ j ≤ n}.

We also call it the m-Shi arrangement.
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Shi arrangement for n = 3 and m = 2

Hα1,0 Hα1,1 Hα1,2Hα1,−1

Hα2,0

Hα2,1

Hα2,2

Hα2,−1

Hθ,0 Hθ,1 Hθ,2Hθ,−1
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Dominant/fundamental chamber

The fundamental or dominant chamber is ∩αij H
+
αij ,0

.

Hα1,0

Hα2,0

Hθ,0
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Regions

The regions of an arrangement are the connected components
of the complement of the arrangement. Regions in the
dominant chamber are called dominant regions.
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Dominant regions

Hα1,0

Hα2,0

Hα1,1

Hα2,1

Hθ,1

Hα1,2

Hα2,2

Hθ,2

Dominant Shi regions for n = 3 and m = 2.
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Number of regions in the dominant chamber

When m = 1, there are the Catalan number

Cn =
1

n + 1

(
2n
n

)
=

1
n + n + 1

(
n + n + 1

n

)
regions in the dominant chamber.
When m > 1, there are the extended Catalan number

Cnm =
1

nm + 1

(
n(m + 1)

n

)
=

1
n + nm + 1

(
n + nm + 1

n

)
regions in the dominant chamber. Cn = Cn1.
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Bounded regions

There are
1

n + nm − 1

(
n + nm − 1

n

)
partitions which are both n-cores and (nm − 1)-cores and there
are

1
n + nm − 1

(
n + nm − 1

n

)
bounded regions in the m-Shi arrangements.
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Alcoves⇐⇒ n-cores

∅

m = 1, n = 3
3-cores and 2-cores
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Alcoves⇐⇒ n-cores

∅

m = 2, n = 3
3-cores and 5-cores
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Alcoves⇐⇒ n-cores

∅

m = 1, n = 3
3-cores and 4-cores
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Alcoves⇐⇒ n-cores

∅

m = 2, n = 3
3-cores and 7-cores
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m-minimal alcoves

An alcove is m-minimal if it is the alcove in its m-Shi region
separated from A0 by the least number of hyperplanes in the
m-Shi arrangement.

We show the m-minimal alcoves have the same
characterization as the n-cores which are also (nm + 1)-cores.
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Addable and removable boxes

w−1A0 ⊆ Hα1,3
− ∩ Hθ,4

+ ∩ Hα2,2
−,

λ = (5,3,2,2,1,1) = w∅
0 1 2 0 1
2 0 1
1 2
0 1
2
1

1
2 -space

αi w−1(αi) wall i-boxes 〈w(~0) | αi〉
α0 −α1+3δ Hα1,3

− 3 addable 0-boxes −3 + 1
α1 θ−4δ Hθ,4

+ 4 removable 1-boxes −4
α2 −α2+2δ Hα2,2

− 2 addable 2-boxes 2
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Addable and removable boxes

0 1 2 0 1 2
2 0 1 2
1 2
0 1
2
1

0 1 2 0 1
2 0 1
1 2 0
0 1
2 0
1
0

40/41



Addable and removable boxes
Hα1,0

Hα2,0

Hα1,1

Hα2,1

Hθ,1

Hα1,2

Hα2,2

Hθ,2

Hα1,3

Hθ,3 Hθ,4

w−1A0

αi w−1(αi) (w) w−1A0 ⊆ Hα,k
+

α0 −α1 + 3δ {−α1 + δ,−α1 + 2δ, Hα1,1
+,Hα1,2

+,
α1 θ − 4δ −θ + δ,−θ + 2δ, Hθ,1

+,Hθ,2
+,

−θ + 3δ,−θ + 4δ, Hθ,3
+,Hθ,4

+

α2 −α2 + 2δ −α2 + δ} Hα2,1
+
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