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Partitions

A partition is a weakly decreasing sequence of positive integers
of finite length.

The Young diagram of the partition A = (A > o > ... > \g) is
a diagram with a left-justified array of A\ boxes in row 1, o
boxes in row 2, etc.

A = (5,3,3,2) has Young diagram ‘ ‘

|A| = # of boxes = > ; \; = 13.
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Representation theory of G4 where d = |)|.

Partitions index the irreps over Q. You can use them to
construct the irreps—they encode a wealth of information.
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Rim-hooks

| ] < [x]x]
X X | X
X | X X | X
X | X X | X

5/41



n-cores

An n-core is an integer partition A such that n { h;; for all boxes
(i,/) in A
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Some 3-cores. Boxes contain their hook numbers.
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If you successively remove all n-rim-hooks, you are left with an
n-core. d = wn + |core|
Independent of order removed.

If pis prime and X\ is a p-core, the irrep corresponding to A is
still irreducible and projective over IFp,.
(If nis not prime, use Hecke algebra at an nth root of unity.)

p-cores are the matrix algebras when you decompose the
group algebra into “blocks:"

Otherwise, many irreps can belong to the same block.
The blocks are indexed by p-cores.
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The affine symmetric group &, acts on {n-cores}.
In fact, &, acts on all partitions and the orbit &, - ) = {n-cores}.

All their corresponding blocks are matrix algebras over Iy, and
so Morita equivalent. This is part of a larger story of
Chuang-Rouquier who show blocks in the same orbit are
derived equivalent.

This is also part of the larger story whereby the {n-cores} are
the extremal vectors in a highest weight crystal for sl,.
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S, acts on n-cores

The box in row i, column j has residue j — i mod n.
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Sk acts on the n-core A by removing/adding all boxes with
residue k

The residues encode information about the central character
and more specifically how a large commutative subalgebra
acts.

9/41



S, acts on n-cores
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S, acts on n-cores
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S, acts on cores
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The affine symmetric group

The affine symmetric group, denoted @n, is defined as

@n:(s1,...,sn_1,soys,-2:1, sisj=sjsjifiZj+1 mod n,
sisjsi = sjs;sjif i=j+1 mod n)
forn>2,and@2:<s1,so|s,2:1>.

The affine symmetric group contains the symmetric group &,
as a subgroup. &, is the subgroup generated by the s;,
O0<i<n
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WES, <+—= w-0=0
So
0 0]

Sp- 0 = {n-cores} ~ &,/G.
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G, acts by affine transformations

s; = reflection over hyperplane {x; = xi11} =: Hy,, 0.
V={(x1,....,.%n) eR" | X1 +...+ X, =0} CR"

So = affine reflection over hyperplane {x; — x, =1} =: Hy 4.

we6, <« w-(0,0,...,0)=(0,0,...,0)
Ol’blt Gn’ (070,70) ~ 6,’;/6[).

@n -(0,0,...,0) =root lattice = Q = P, Z«;, where

aj=(0,...,1,=1,...,0) are the simple roots.
N——

i i
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Notation

aj=aj+---aj_y € V,where 1 <j<j< nare the positive
roots.

0=ay+ - +ap1=(1,0,...,0,—1) is the highest root

o = {x € V(x| a) = k}, H , = {x € V|(x | a) > Kk}
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Roots and hyperplanes n =3

Ha1,0

Ha2,0

The roots a1, ao, and 6 and their reflecting hyperplanes.
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Alcoves

Each connected component of V'\ Ja1<i<j<n-1 Ha, k is called
keZ

[ NCNCNONONON S

an alcove.
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The fundamental alcove Ay is yellow.
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S, acts on alcoves

s; reflects over H,, o for 1 </ < 0 and s reflects over Hy 1.
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Bijection n-cores to alcoves

N

Certain statistics on partitions A = w - () correspond to linear
equations or inequalities satisfied by lattice points w - (0, ...,0)
or more precisely alcoves w - Ag.
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Bijection alcoves to alcoves

w-Ag & w Ay
The orbit of .4y under minimal length right representatives
w € 6,\&, is the dominant chamber.
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n-cores to dominant alcoves
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All n-cores which are also t-cores

Above shows n=3,t=5=mn—1.
Below shows n=3,t =7 =mn+1.
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In 2002', Jaclyn Anderson showed that there are -1 (")
partitions which are both n-cores and t-cores when nand t are

relatively prime.

There are extended Catalan number = Cpp, partitions which are
simultaneously n-cores and (nm + 1)-cores, the same as the
number of dominant Shi regions.

Take the “minimal” alcove in each region.

The partitions which are simultaneously n-cores and

(nm — 1)-cores are in bijection with the bounded dominant Shi
regions.

Take the “maximal" alcove in each region.

T“Partitions which are simultaneously - and -core”, Discrete
Mathematics
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Extended Shi arrangement

For any positive integers n and m, the extended Shi
arrangement is

{Ha,.j,k|k6Z, —m<k<mand1<i<j<n}.

We also call it the m-Shi arrangement.
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Shi arrangement forn=3 and m =2
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Dominant/fundamental chamber

The fundamental or dominant chamber is Nay HJr

Hoq ,0

Ha2,0
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Regions

The regions of an arrangement are the connected components
of the complement of the arrangement. Regions in the
dominant chamber are called dominant regions.
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Dominant regions
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Dominant Shi regions for n =3 and m = 2.

31/41



Number of regions in the dominant chamber

When m = 1, there are the Catalan number

1 2n 1 n+n-+1
Cn = =
n+1\ n n+n-+1 n
regions in the dominant chamber.
When m > 1, there are the extended Catalan number

1 n(m+1) 1 n+nm+1
Cnm: - I
nm+1 n n+nm-+1 n

regions in the dominant chamber. C, = Cp;.
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Bounded regions

There are

1 n+nm-—1
n+nm-—1 n

partitions which are both n-cores and (nm — 1)-cores and there

are
1 n+nm-—1
n+nm-—1 n

bounded regions in the m-Shi arrangements.
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Alcoves <= n-cores
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Alcoves <= n-cores
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Alcoves <= n-cores
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Alcoves <= n-cores

m=2,n=3
3-cores and 7-cores
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m-minimal alcoves

An alcove is m-minimal if it is the alcove in its m-Shi region

separated from Ag by the least number of hyperplanes in the
m-Shi arrangement.

We show the m-minimal alcoves have the same
characterization as the n-cores which are also (nm + 1)-cores.
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Addable and removable boxes
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Addable and removable boxes
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Addable and removable boxes
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