Quantum Optimal Control Landscapes
— a “Simplicity” Theory —

Rebing Wu

Department of Automation, Tsinghua University
Center for Quantum Information Science and Technology, TNlist

BIRS Workshop on Quantum Control
Banff, April 5, 2011
Outline

1. Motivation
2. Basic Concepts
3. Topological Analysis of Quantum Control Landscapes
4. Open questions
5. Concluding Remarks
Schemes for ultrafast laser control

- Frequency-domain approach: Two-pathway interference
- Time-domain approach: Pump-dump, STIRAP
- Optimal design approach: Optimal control theory, leaning control

Achievements

Optimization is supposed to be hard due to

- Limited bandwidth and severe noise in shaped pulses;
- A large number of control parameters.

What have been reported:

- > 1000 excellent simulation results (since 1985);
- ∼ 150 successful close-loop experiments (since 1998).

Observations:

- **dramatic enhancement** of the system yield;
- **robust** solutions to noises exist.
Achievements

Optimization is supposed to be hard due to
 - Limited bandwidth and severe noise in shaped pulses;
 - A large number of control parameters.

What have been reported:
 - > 1000 excellent simulation results (since 1985);
 - ~ 150 successful close-loop experiments (since 1998).

Observations:
 - dramatic enhancement of the system yield;
 - robust solutions to noises exist.

Why is it easy to find a good quantum control?
Quantum Control Landscape: basic concepts

Definition: the graph of the mapping from the control variables to the cost functional.

Quantum Control Landscape: basic concepts

Definition: the graph of the mapping from the control variables to the cost functional.

Critical topology: the topology of the set of critical points.

- Distribution of candidate solutions — algorithmic efficiency.
- Multiplicity of optimal solution set — robustness.
What we like...
What we dislike...
Control landscape for Observable Preparation

Schrödinger equation for an N-level closed quantum system:

$$\frac{\partial}{\partial t} \rho(t) = \frac{1}{i\hbar} \left[H_0 - \epsilon(t)\mu, \rho(t) \right], \quad \rho(t_0) = \rho_0.$$

where $\epsilon(\cdot)$ is the control field. Consider the maximization of $\langle O \rangle$ at $t = T$:

$$J[\epsilon(\cdot)] = \text{Tr}\{\rho[T; \epsilon(\cdot)]O\}, \quad \epsilon(\cdot) \text{ admissible},$$

In principle, what does the landscape look like under unlimited control resources?
Control landscape at a coarse-grained scale
Control landscape at a coarse-grained scale

Projection from the **dynamical control landscape**

\[J[\epsilon(\cdot)] = \text{Tr}\{\rho[T;\epsilon(\cdot)]O\}, \quad \epsilon(\cdot) \text{ admissible} \]

onto the **kinematic control landscapes**:

\[J(\rho) = \text{Tr}(\rho O), \quad \rho \text{ achievable}. \]
\[J(U) = \text{Tr}(U\rho_0 U^\dagger O), \quad U \text{ achievable}. \]

where \(U \) is the propagator at \(t = T \).
Control landscape at a coarse-grained scale

Projection from the dynamical control landscape

\[J[\epsilon(\cdot)] = \text{Tr}\{\rho[T; \epsilon(\cdot)]O\}, \quad \epsilon(\cdot) \text{ admissible} \]

onto the kinematic control landscapes:

\[J(\rho) = \text{Tr}(\rho O), \quad \rho \text{ achievable}. \]
\[J(U) = \text{Tr}(U \rho_0 U^\dagger O), \quad U \text{ achievable}. \]

where \(U \) is the propagator at \(t = T \). In the case that the system is controllable

\[J(U) = \text{Tr}(U \rho_0 U^\dagger O), \quad U \in \mathcal{U}(N). \]
Question

Dynamical control landscape
high-dimensional and highly nonlinear.

Kinematic control landscape
lower-dimensional and linear/quadratic.

What can be learned about the *dynamical landscape* from the kinematic one?
Landscape Reduction
Landscape Reduction

Suppose that $\epsilon(\cdot)$ is a critical point of $J(\epsilon(\cdot))$:

$$\delta J[\delta \epsilon(\cdot)] = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0, \quad \forall \ \delta \epsilon(\cdot).$$
Landscape Reduction

Suppose that $\epsilon(\cdot)$ is a critical point of $J(\epsilon(\cdot))$:

$$\delta J[\delta \epsilon(\cdot)] = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0, \quad \forall \delta \epsilon(\cdot).$$

If $\delta \epsilon(\cdot) \mapsto \delta U(T)$ is surjective (i.e., $\epsilon(\cdot)$ is regular), then $\delta J \equiv 0$ iff. $\nabla J(U(T)) = 0,$
Landscape Reduction

Suppose that $\epsilon(\cdot)$ is a critical point of $J(\epsilon(\cdot))$:

$$\delta J[\delta \epsilon(\cdot)] = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0, \quad \forall \, \delta \epsilon(\cdot).$$

If $\delta \epsilon(\cdot) \mapsto \delta U(T)$ is surjective (i.e., $\epsilon(\cdot)$ is regular), then $\delta J \equiv 0$ iff. $\nabla J(U(T)) = 0$,

- $\epsilon(\cdot)$ is critical iff. $U(T)$ is critical;
Landscape Reduction

Suppose that $\epsilon(\cdot)$ is a critical point of $J(\epsilon(\cdot))$:

$$\delta J[\delta \epsilon(\cdot)] = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0, \quad \forall \delta \epsilon(\cdot).$$

If $\delta \epsilon(\cdot) \mapsto \delta U(T)$ is surjective (i.e., $\epsilon(\cdot)$ is regular), then $\delta J \equiv 0$.iff. $\nabla J(U(T)) = 0$,

- $\epsilon(\cdot)$ is critical .iff. $U(T)$ is critical;
- Moreover, $\epsilon(\cdot)$ is max. (min., saddle) .iff. $U(T)$ is max. (min., saddle).
Landscape Reduction

Suppose that $\epsilon(\cdot)$ is a critical point of $J(\epsilon(\cdot))$:

$$\delta J[\delta \epsilon(\cdot)] = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0, \forall \delta \epsilon(\cdot).$$

If $\delta \epsilon(\cdot) \mapsto \delta U(T)$ is surjective (i.e., $\epsilon(\cdot)$ is regular), then $\delta J \equiv 0$ iff $\nabla J(U(T)) = 0$,

- $\epsilon(\cdot)$ is critical iff $U(T)$ is critical;

Moreover, $\epsilon(\cdot)$ is max. (min., saddle) iff $U(T)$ is max. (min., saddle).

Conclusion: critical topology preserved from the dynamical to the kinematic picture if all admissible controls are regular.
Conditions for kinematic landscape critical points

Take the parametrization $U \rightarrow U e^{i s A}$ in $\mathcal{U}(N)$ for any $A^\dagger = A$ and take the derivative of J:

$$\left. \frac{dJ}{ds} \right|_{s=0} = \text{Tr}(i A [U \rho_0 U^\dagger, O]) = 0, \quad \forall A^\dagger = A.$$

Critical Condition: $[U \rho_0 U^\dagger, O] = 0$.

In particular, when ρ and O are nondegenerate, the critical U simultaneously diagonalizes $\rho(T)$ and O. \(^a\)

Conditions for kinematic landscape critical points

Take the parametrization $U \rightarrow U e^{i s A}$ in $\mathcal{U}(N)$ for any $A^\dagger = A$ and take the derivative of J:

$$\frac{dJ}{ds} \bigg|_{s=0} = \text{Tr}(i A [U \rho_0 U^\dagger, O]) = 0, \quad \forall A^\dagger = A.$$

Critical Condition: $[U \rho_0 U^\dagger, O] = 0$.

In particular, when ρ and O are nondegenerate, the critical U simultaneously diagonalizes $\rho(T)$ and O. \(^a\)

Critical topology of kinematic control landscapes
Critical topology of kinematic control landscapes

Further Hessian analysis shows that:

- Only one local maximum submanifold;
Critical topology of kinematic control landscapes

Further Hessian analysis shows that:

- Only one local maximum submanifold;
- One minimum and a number ($< N!$) of saddle submanifolds;
Critical topology of kinematic control landscapes

Further Hessian analysis shows that:

- Only one local maximum submanifold;
- One minimum and a number ($< N!$) of saddle submanifolds;
- Degeneracies in ρ_0 and O lead to fewer and larger critical submanifolds. (R. Wu, H. Rabitz and M. Hsieh, J. Phys. A., 41, 015006, 2008)
Critical topology of kinematic control landscapes

Further Hessian analysis shows that:

- Only one local maximum submanifold;
- One minimum and a number \((< N!) \) of saddle submanifolds;
- Degeneracies in \(\rho_0 \) and \(O \) lead to fewer and larger critical submanifolds. (R. Wu, H. Rabitz and M. Hsieh, J. Phys. A., 41, 015006, 2008)

Conclusion:

- **no false traps** (local suboptima) exist to impede the search for optimal controls;
Critical topology of kinematic control landscapes

Further Hessian analysis shows that:

- Only one local maximum submanifold;
- One minimum and a number ($< N!$) of saddle submanifolds;
- Degeneracies in ρ_0 and O lead to **fewer** and **larger** critical submanifolds. (R. Wu, H. Rabitz and M. Hsieh, J. Phys. A., 41, 015006, 2008)

Conclusion:

- **no false traps** (local suboptima) exist to impede the search for optimal controls;
- Robustness of optimal controls on the “flat top” (maximum submanifold).
Control landscape for unitary gate fidelity

Fidelity defined as the distance from a desired quantum gate:

\[J(U) = \|U - W\|^2 = 2N - 2\text{ReTr}(W^\dagger U), \quad U \in \mathcal{U}(N). \]

Critical condition: \(W^\dagger U = U^\dagger W. \)

- only one local minimal submanifold;
Control landscape for unitary gate fidelity

Fidelity defined as the distance from a desired quantum gate:

$$J(U) = \|U - W\|^2 = 2N - 2\text{Re}\text{Tr}(W^\dagger U), \quad U \in U(N).$$

Critical condition: $W^\dagger U = U^\dagger W$.

- only one local minimal submanifold;
- one maximal and $N - 1$ saddle submanifolds;
Control landscape for unitary gate fidelity

Fidelity defined as the distance from a desired quantum gate:

\[J(U) = \|U - W\|^2 = 2N - 2\Re\text{Tr}(W^\dagger U), \quad U \in \mathcal{U}(N). \]

Critical condition: \(W^\dagger U = U^\dagger W \).

- only one local minimal submanifold;
- one maximal and \(N - 1 \) saddle submanifolds;
- the topology is universal for all \(W \in \mathcal{U}(N) \).
Control landscape for unitary gate fidelity

Fidelity defined as the distance from a desired quantum gate:

\[J(U) = \| U - W \|^2 = 2N - 2\Re\Tr(W^\dagger U), \quad U \in \mathcal{U}(N). \]

Critical condition: \(W^\dagger U = U^\dagger W \).

- only one local minimal submanifold;
- one maximal and \(N - 1 \) saddle submanifolds;
- the topology is universal for all \(W \in \mathcal{U}(N) \).

Conclusion: no false traps (local suboptima) exist to impede the search for optimal controls.
How about open quantum systems?

In reality, environmental interactions are always present:

\[H = H_S \otimes \mathbb{I}_\lambda + \mathbb{I}_N \otimes H_E + H_{SE} \]
Kinematic Control Landscape for Open Quantum Systems

Definition

\[J(\{K_j\}) = \sum_j \text{Tr}(K_j \rho_0 K_j^\dagger O), \quad \sum_{j=1}^{\lambda} K_j^\dagger K_j = I_N. \]
Kinematic Control Landscape for Open Quantum Systems

Definition

\[J(\{K_j\}) = \sum_j \text{Tr}(K_j \rho_0 K_j^\dagger O), \quad \sum_{j=1}^\lambda K_j^\dagger K_j = \mathbb{I}_N. \]

Assumptions

- all Kraus maps are achievable;
- all admissible controls are regular.
Landscape Lifting for $J(\{K_j\}) = \sum_j \text{Tr}(K_j \rho_0 K_j^\dagger O)$
Landscape Lifting for $J(\{K_j\}) = \sum_j \text{Tr}(K_j \rho_0 K_j^\dagger O)$

The equation $\sum_j K_j^\dagger K_j = \mathbb{I}_N$ implies that the following K is the first N columns of some enlarged unitary matrix:

$$K = \begin{pmatrix} K_1 \\ \vdots \\ K_\lambda \end{pmatrix} = U \begin{pmatrix} I_N \\ \vdots \\ 0_N \end{pmatrix}, \quad U = \begin{pmatrix} K_1 \cdots * \\ \vdots \vdots \vdots * \\ K_\lambda \cdots * \end{pmatrix}$$
Landscape Lifting for \(J(\{K_j\}) = \sum_j \text{Tr}(K_j \rho_0 K_j^\dagger O) \)

The equity \(\sum_j K_j^\dagger K_j = \mathbb{I}_N \) implies that the following \(K \) is the first \(N \) columns of some enlarged unitary matrix:

\[
K = \begin{pmatrix}
K_1 \\
\vdots \\
K_\lambda
\end{pmatrix} = U \begin{pmatrix}
I_N \\
\vdots \\
0_N
\end{pmatrix}, \quad U = \begin{pmatrix}
K_1 & \cdots & * \\
\vdots & \vdots & \vdots \\
K_\lambda & \cdots & *
\end{pmatrix}
\]

\(J(K) = \text{Tr}\{U (\rho_0 \otimes |1\rangle\langle1|) U^\dagger (O \otimes \mathbb{I}_\lambda)\} \triangleq J(U) \)
Landscape Lifting for $J(\{K_j\}) = \sum_j \text{Tr}(K_j \rho_0 K_j^\dagger O)$

The equality $\sum_j K_j^\dagger K_j = I_N$ implies that the following K is the first N columns of some enlarged unitary matrix:

$$K = \begin{pmatrix} K_1 \\ \vdots \\ K_\lambda \end{pmatrix} = U \begin{pmatrix} I_N \\ \vdots \\ 0_N \end{pmatrix}, \quad U = \begin{pmatrix} K_1 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ K_\lambda & \cdots & * \end{pmatrix}$$

$$J(K) = \text{Tr}\{U(\rho_0 \otimes |1\rangle\langle 1|)U^\dagger (O \otimes I_\lambda)\} \triangleq J(U)$$

Auxiliary control landscape for “system” + “environment”.

Landscape Mapping
Landscape Mapping

\[\epsilon(\cdot) \xrightarrow{S-equation} J[\epsilon(\cdot)] \xrightarrow{dynamical} \]
\[K \xrightarrow{kinematic} J(K) \xrightarrow{J(\cdot)} \]
\[U \xrightarrow{kinematic(lifted)} \]
\[K = U(I_N \otimes |1\rangle\langle 1|) \]
Landscape Mapping

\[\varepsilon(\cdot) \rightarrow S\text{–equation} \rightarrow K \rightarrow U \]

\[\text{dynamical} \rightarrow \text{controllable/regular} \rightarrow \text{kinematic} \rightarrow \text{kinematic(lifted)} \]

\[J[\varepsilon(\cdot)] \rightarrow J(K) \rightarrow J(U) \]

\[K = U(I_N \otimes |1\rangle\langle1|) \]
Landscape Mapping

\[\epsilon(\cdot) \xrightarrow{\text{controllable/regular}} K \xleftarrow{\text{surjective}} \]

\[\text{dynamical} \quad \rightarrow \quad \text{kinematic} \quad \leftrightarrow \quad \text{kinematic(lifted)} \]

\[S - \text{equation} \]

\[K = U(\mathbb{1}_N \otimes |1\rangle \langle 1|) \]

\[J[\epsilon(\cdot)] \xrightarrow{} J(K) \xleftarrow{} J(U) \]
Landscape Mapping

\[\epsilon(\cdot) \xrightarrow{\text{S-equation}} K \xleftarrow{\text{surjective}} U \]

\[J[\epsilon(\cdot)] \xrightarrow{\text{dynamical}} \ xrightarrow{\text{kinematic}} J(K) \xleftarrow{\text{kinematic (lifted)}} J(U) \]

\[K = U(I_N \otimes |1\rangle\langle 1|) \]

Controllable/regular

Topologically equivalent
Landscape Topology for open quantum systems
Landscape Topology for open quantum systems

Owing to the equivalence with a closed-system control landscape:
Landscape Topology for open quantum systems

Owing to the equivalence with a closed-system control landscape:

- Again, no false traps exist;
Landscape Topology for open quantum systems

Owing to the equivalence with a closed-system control landscape:
- Again, no false traps exist;
- Stronger controllability assumed, but not on the environment;
Landscape Topology for open quantum systems

Owing to the equivalence with a closed-system control landscape:

- Again, no false traps exist;
- Stronger controllability assumed, but not on the environment;
- Significant increase in $\#$ critical submanifolds ($\sim (\lambda N)!$);
Landscape Topology for open quantum systems

Owing to the equivalence with a closed-system control landscape:

- Again, no false traps exist;
- Stronger controllability assumed, but not on the environment;
- Significant increase in \# critical submanifolds (\sim (\lambda N)!);

Open question: the role of controllability?

Almost all quantum systems are controllable (C. Altafini, J. Math. Phys. 43, 2051 (2002).) BUT...

Gate fidelity landscape $J = \|\text{Tr}(W^\dagger U)\|^2$, $U \in SU(2) \subset U(8)$.
Open question: the role of controllability?

- The loss of controllability leads to traps!
Open question: the role of controllability?

- The loss of controllability leads to traps!
- Ruggedness \uparrow when the controllability \downarrow.
Open question: the role of controllability?

- The loss of controllability leads to traps!
- Ruggedness ↑ when the controllability ↓;
- Even worse when the target is not reachable.
Open question: the role of controllability?

- The loss of controllability leads to traps!
- Ruggedness ↑ when the controllability ↓;
- Even worse when the target is not reachable.
Open question: the role of controllability?

- The loss of controllability leads to traps!
- Ruggedness \uparrow when the controllability \downarrow;
- Even worse when the target is not reachable.

The role of Controllability beyond Yes-or-No
not only the existence of “wanted” controls but also nonexistence of “unwanted” controls

Open question: the role of singularity?
Open question: the role of singularity?

Look at the critical condition for $\epsilon(\cdot)$:

$$\delta J = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0,$$

where $\delta U(T)$ is dependent on $\delta \epsilon(\cdot)$.
Open question: the role of singularity?

Look at the critical condition for $\epsilon(\cdot)$:

$$
\delta J = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0,
$$

where $\delta U(T)$ is dependent on $\delta \epsilon(\cdot)$.

The mapping $\delta \epsilon(\cdot) \mapsto \delta U(T)$ can be singular.
Open question: the role of singularity?

Look at the critical condition for $\varepsilon(\cdot)$:

$$\delta J = \langle \nabla J(U(T)), \delta U(T) \rangle \equiv 0,$$

where $\delta U(T)$ is dependent on $\delta \varepsilon(\cdot)$.

The mapping $\delta \varepsilon(\cdot) \mapsto \delta U(T)$ can be singular.

Invisible critical points in the kinematic picture!
Open question: the role of singularity?

- Singular controls may become traps, e.g. zero field;
 P. Fouquieres, S. Schirmer, arXiv:1004.3492
Open question: the role of singularity?

- Singular controls may become traps, e.g. zero field; P. Fouquieres, S. Schirmer, arXiv:1004.3492
Open question: the role of singularity?

- Singular controls may become *traps*, e.g. zero field; P. Fouquieres, S. Schirmer, arXiv:1004.3492

Important in time optimal control (Lapert et al, PRL 2010) !
Open Question: complexity?

Search efforts scaling with the system dimension and objectives, e.g., N, ρ, O or W?
Open Question: complexity?

Search efforts scaling with the system dimension and objectives, e.g., N, ρ, O or W?

Open Question: complexity?

Search efforts scaling with the system dimension and objectives, e.g., N, ρ, O or W?

Concluding Remarks

- Trap-free landscape features can obtained from the kinematic picture;
Concluding Remarks

- Trap-free landscape features can be obtained from the kinematic picture;
- Singularity may generate traps, but they are not likely to be encountered in practice;
Concluding Remarks

- Trap-free landscape features can obtained from the kinematic picture;
- Singularity may generate traps, but they are not likely to be encountered in practice;
- A strong support for evident laboratory successes;
Concluding Remarks

- Trap-free landscape features can obtained from the kinematic picture;
- Singularity may generate traps, but they are not likely to be encountered in practice;
- A strong support for evident laboratory successes;
- Open up perspectives in developing more efficient algorithms (e.g., gradient and evolutionary-strategy algorithms are going on in Princeton laboratory).
THANK YOU!