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Problem: Find analogues of Ball's cube slicing theorem for the
Gaussian measure and more general measures.
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Problem: Find analogues of Ball's cube slicing theorem for the
Gaussian measure and more general measures.

Let h:[—1,1] — Ry be even and in CL. Then
n

duns) —[[1 bsids /(| 11 o) s = (5)js € B2

defines a probability measure on the n-cube BZ. For a € S™ 1 let
A(a, h) == pp{x € BL, | (x,a) =0}

be the (n — 1)-dimensional measure of the central section orthogonal to a.
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Problem: Find analogues of Ball's cube slicing theorem for the
Gaussian measure and more general measures.

Let h:[—1,1] — Ry be even and in CL. Then
n 1 n
dints) =[] his)as /([ ) . s = (s < B2
Jj=1 N

defines a probability measure on the n-cube BZ. For a € S™ 1 let
A(a, h) == pp{x € BL, | (x,a) =0}

be the (n — 1)-dimensional measure of the central section orthogonal to a.

For k e {1,--- ,n}, let f, = ﬁ(l,--- ,1,0,---,0) € S"° L,
k
K. Ball: For Lebesgue measure (h =1), A(a,1) < A(h,1).

A. Zvavitch: False in general for Gaussian measure, hy(s) = exp(—\s?):
For n > 3 and large A > 0, A(f,, hy) > A(f2, hy).

H. Kdnig, A. Koldobsky (Kiel; Missouri) Measure of sections Banff, May 2011 2/20



The main result
[0,1] and h(0) < 3h(1). Suppose further that

Let h:[-1,1] — Rwq be even and in C3 with ¥ <0, h" <0, h"" >0 on

= Hle j
Let a=(3)]_, €S" L with a; >

h(s;j)ds; / <f_11

([ enorr) ([ ) = ([ o)
Consider dyu(s) :
A(a, h)

: (1)
h(r)dr)n, s =(s)", € B

Y
J:
>a,>0. Then, if a1 < 1/\/_
< A(f, h).
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The main result

The main result

Let h:[-1,1] — Rwq be even and in C3 with ¥ <0, h" <0, h"" >0 on
[0,1] and h(0) < 3h(1). Suppose further that

([ o) () = ([r0) - o

Consider dup(s) := Hle h(sj)ds; / <f—11 h

Let a=(a;))", € S" ! witha > ---
J/j=1

(r)dr)n, s=(s)]_1 € BL.
>a,>0. Then, if a1 < 1/\/§

Aa, h) < A, h).

Remark: The conditions A" > 0, h(0) < 2h(1) are technical and can be

weakened. Condition (1) is essential, without it, in general, for large n
A(fa, h) > A(fa, h).
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On the maximal measure of sections of the n-cube The main result

Corollary. For A > 0 consider the Gaussian measure with
h(r) = exp(—Ar?)

1 n
du(s) = exp (—\|s[|3) ds/ (/ exp(—)\rz)dr) , seBl.
-1
Then for A < 0.196262 and a; < 1//2
Aa, h) < A2, h)
while for A > 0.196263 and large n
Alfy. h) > A(fs, h).

Condition (1) is satisfied for h(r) = exp(—Ar?) < \ < 0.1962627...
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Formula for the measure of the cube section
Let h:[~1,1] — Rsq be even and in C*. Let
1
ﬂq:/

1
cos(tr)h(r)dr // h(r)dr, teR (2)
0 0
Then the measure uy, of the section of BL orthogonal to
a=(a)l, € S js given by
1 [
A@M:—/ 11 f(air) or
™ Jo .
j=1
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Analogue of K. Ball’s main inequality
Assume he C3[0,1], h>0, H <0, h' <0, h">0,
and (1). Let

h(0) < 2h(1)
f(t) ;:/0 cos(tr)h(r)dr / /0 h(r)dr,
H(p) = ﬁ/ooo F(O)Pdt, p>o0.
Then for all p > 2, H(p) < H(2).
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On the maximal measure of sections of the n-cube
Proof of the Theorem using Proposition 2:
Let a = (a))7_; € Sl 0<a; <1/v2. Then
pj = afz >2, Y p%- =1 and Hélder's inequality yields

j=1
/ H f(ajr)dr

n

o 1/pj
H (/ ]f(ajr)|pfdr> , ajr=t
0

j=1

A(a, h) =

3 e

IA
3=

n

(v [ rf(t)|Pfdt)”""

j=1
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On the maximal measure of sections of the n-cube
Proof of the Theorem using Proposition 2:
Let a = (a))7_; € Sl 0<a; <1/v2. Then

pj = afz > 2, 27:1 p%- =1 and Hélder's inequality yields

Aa, ) :% /0 I1 f(air)dr
j=1
1 n 00 ) 1/p;
<= T o
< Jl;[l (/0 [f(ajr)| dr> , ajr=t
1 n 1/pj
_ = PJ
210 (va [ rrome)
j=1
LT 1/p
= — J <
- H H(p H( )

/OO f(r/V2)%dr = A(f, h)
0
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Nazarov-Podkorytov’s Lemma on distribution functions
(X, X) measure space, f,g : X — R in Ly(X, ) for any p >0,
F(x) =Mt e X |I|f(t)] > x},

Assume there is xg > 0 such that

G<F

on

G(x) = Mt e X |lg(t) > x},

X € Rzo.
(0,x) and G=>F

on

(XO’ OO) (3)

Banff, May 2011
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Nazarov-Podkorytov’s Lemma on distribution functions
(X, X) measure space, f,g : X — R in Ly(X, ) for any p >0,
F(x) =Mt e X |I|f(t)] > x},

Assume there is xg > 0 such that

G(x) = MteX|lg(t) >x}, x€Rx.
G<F on (0,x) and G>F on (xp,0).
Then (p) = # [ (g(t)|P —|f(t)|P)dt s increasing in p € Rxo.

0

Therefore

implies

(3)
i F(®)Pde < [ |g(t)|Pdt

for all p > pg.
=} = = 1PN G4

[ 1f(2)|Pedt < [ |g(t)|Podt for some pg > 0




The [y-norm of f
We apply Lemma 1 with pg = 2, f and a suitable exponential function g.
For this we need

Let h be as in Proposition 1 and fort > 0
1 1
f(t) :/ cos(tr)h(r)dr / h(r)dr,
0 0
g(t) = exp(—dt?)

Then

ek (o) ([fra)
Jo© If(0)Pde = [ lg(t)Pdt.

[m]
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Zeros of f -

Under the conditions imposed on h,  f(t) resembles %:
(Polya-Szegd)
Assume h € C2[0,1] with h > 0, and [/’ <0, h" < 0] or [/ > 0] and let

1 1

F(t) = / cos(tr)h(r)dr / / h(r)dr.
0 0

Then f has infinitely many zeros, all of which are real.

For all n € N, there is exactly one zero between

(and between

—(n+ 1) and

nt and (n+1)7
—nm).
=] F = = E 9DAC¢




On the maximal measure of sections of the n-cube Comparison of f and g near 0

Comparison of f and g near 0
To prove Proposition 2 using Lemma 1, take f, g as above and let F, G
denote their distribution functions. We have to show (3): there is xp > 0
with

G<F on (0,x), G>F on (x,1]
Note |f|, g<1. For G>F on (x,1] weneed [f|<g
near 0, where |f|,g are maximal. Let

d’ ::% /01 r?h(r)dr / /01 h(r)dr.

Near t=0: cos(tr)~1—35t2r2 f(t)~1—d't> ~exp(—d't?).
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On the maximal measure of sections of the n-cube Comparison of f and g near 0

Comparison of f and g near 0
To prove Proposition 2 using Lemma 1, take f, g as above and let F, G
denote their distribution functions. We have to show (3): there is xp > 0
with

G<F on (0,x), G>F on (x,1]

Note |f|, g<1. For G>F on (x,1] weneed [f|<g
near 0, where |f|,g are maximal. Let

d’ ::% /01 r?h(r)dr / /01 h(r)dr.

Near t=0: cos(tr)~1—35t2r2 f(t)~1—d't> ~exp(—d't?).
Thus |f(t)] < g(t) = exp(—dt?>) near t=0 requires d' >d

() =) ([ o
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Then for all

Comparison of f and g near 0

he C? h>0,H <0, <0, t; = smallest positive zero of f,
0<t<t,

1 1
f(t)=/o cos(tr)h(r)dr//(; h(r)dr.

1
d' ==
2

F(£)] < exp(—d't?),

/ " h(r)r / b




On the maximal measure of sections of the n-cube Comparison of f and g near 0

Proof. Denote the zeros of f by
th € (nm,(n+ 17 and —t,, f(0)=1, f(0)=0:

f(t)=g<1—g>, In £ (/X ;N|n<1_>

In(1 —cx)" = ﬁ <0 implies that
VR 1
F(Vx) 2v/x

(Inf(v-))'(x) =

is decreasing in x > 0.

Hence

< lim —=2f"(0)=—d" and

(exp(d't?)f () = (f'(t) +2d't f(t)) exp(—d't?) < 0.
Therefore  f(t) < exp(—d't?), t<t. O
H. Kdnig, A. Koldobsky (Kiel; Missouri) Measure of sections



On the maximal measure of sections of the n-cube
Distribution functions
Hence for d’ < d, i.e. condition (1), f(t) < g(t) = exp(—dt?), t< 1,

1 1
and / |f(t)]2dt:/ |g(t)|?dt, which means that
0 0
1

/0 x F(x) dx—/ol x G(x) dx.

Since F<G near x=1 ,F—G has at least one zero

0 < xo < 1. It will have exactly one such zero if F — G s strictly
decreasing, i.e. F' <G’ or |F|>|G'| .Note F' <0, G'<O.
Hence (3) of Lemma 1 for f, g and Proposition 2 will follow from

IF'(x)/ G'(x)| >1, xe]0,1]. (4)

Since  G(x) =g 1(x) =4/In % / Vd,

1/|6'(x)| zzﬁx,/ln;
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On the maximal measure of sections of the n-cube
Distribution function of f
Let 0 < f; < f5 < --- denote the zeros of f and
xi= max |F(0) = [F(E), icN.

te[t;, bl

The maxima x; are decreasing in i € N under the conditions of the
Theorem, as seen by estimates based on integration by parts.
Since f < g on (0, &1], |F'| > |G'| on [x1,1). For x € (0, x1), there is
m € N with x € [Xmy1, xm). Considering level sets one finds

, 1
Fel= 2 )

|f(2)|=x
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On the maximal measure of sections of the n-cube
Distribution function of f
Let 0 < f; < f5 < --- denote the zeros of f and
xi= max _|f(t)]=:|f(&)], ie€N.

te[t; i1l
The maxima x; are decreasing in i € N under the conditions of the

Theorem, as seen by estimates based on integration by parts.
Since f < g on (0, &1], |F'| > |G'| on [x1,1). For x € (0, x1), there is
m € N with x € [Xmy1, xm). Considering level sets one finds

, 1
Fel= 2 )

|f(2)|=x

Thus (4) means

1
2v/d f(tz (t)\ In W >1, X € [Xm+1,Xm) (5)

For x € [Xm+1, Xm), there is one such t = t; € (0, £;) and two t-values with
ti<tiin(t,ty1) for i=1,---.,m
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On the maximal measure of sections of the n-cube
Reduction to the size of f
The most difficult case to show (5) is m = 1. We reduce this to size
estimates of |f| and estimates of tg, t;, t and x» by
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Reduction to the size of f
The most difficult case to show (5) is m = 1. We reduce this to size
estimates of |f| and estimates of tg, t;, t and x» by

. If(0)
()] = 1=l

Under the assumptions of the Polya-Szegé Proposition, when h' < 0
|£(2)]

e = sgn(f(t)f'(1)),

t>0.
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On the maximal measure of sections of the n-cube
Reduction to the size of f
The most difficult case to show (5) is m = 1. We reduce this to size
estimates of |f| and estimates of tg, t;, t and x» by
Lemma 4
Under the assumptions of the Polya-Szegé Proposition, when h' < 0

’:,((tt))" > t 1_"(6(’?“)', e = sen(F(£)F'(1), t>0.

Proof. Integration by parts yields with A" < 0
, h(1) cost f(t) 1 [ cos(tr)r|h(r)|dr
fi(t) = — — + - 1 .
Jo h(r)dr 't t X Jo h(r)dr
If £/(t) > 0 use cos(tr) <1, if f/(t) <0 use cos(tr) > —1, and
fol r|W'(r)|dr = fol h(t)dt — h(1) to conclude
1
F(8)] < < [L —sen(f'(2)) F(2)] -

Dividing by |f(t)| and forming reciprocals yields Lemma 4. [
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Estimate of |F'(x)/G'(x)|

Estimate of |F/(x)/G’(x)|

Using that h is decreasing and concave with h(1) > 2h(0) = 2, we find

2\/3:\/3</01 h(r)dr>2 / (/01 h(r)zdr)
2\/g/olh(r)dr2\/§/ol(1—g)d,:

§ﬁ
6V’

= & = E E 9DACx
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On the maximal measure of sections of the n-cube = ELT N MV ZACSYAHAEI

Estimate of |F'(x)/G’(x)|
Using that h is decreasing and concave with h(1) > 2h(0) = 2, we find

o2 (o) ([0
z@/ h(r)drz@/;(l-g)dr:g@

Therefore (5) is satisfied if

\/7 Z 1—6|f \/7 » X € [Xme1, Xm) (6)
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On the maximal measure of sections of the n-cube = ELT N MV ZACSYAHAEI

Estimate of |F'(x)/G’(x)|

Using that h is decreasing and concave with h(1) > 2h(0) = 2, we find

e 2 (o) ()

Therefore (5) is satisfied if

\/7 Z 1—6|f \/7 » X € [Xme1, Xm) (6)

For m =1 this means, with f(t;) =
5 /2 X X 1
2./% X X In =
6V <(t0+t1)1—x+t11+x> "X
5 /2 x 2x? [ 1
=z ;<(to+t1+t{)ﬁ—tll_xz) |n;>1, X € [x2,x1).
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On the maximal measure of sections of the n-cube = ELT N MV ZACSYAHAEI

Since 2-1/In 1 is increasing in x, (6) is satisfied provided that

5 /2 X2 2x3 [ 1
A= ((to+t1+t —t In—>1 7
6\/;((0+1+1)1—x2 11—x22 nx2 (7)

with f(t;) = xo = second maximum of |f|. We need lower estimates of
to, t1, t; and xo.
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Estimate of |F/(x)/G’(x)|

5

2
6\/; ((to + t + t{)

Since 2-1/In 1 is increasing in x, (6) is satisfied provided that

X2

; 2x2
1—X2

1
\/In—>1
11—x22> nx2

to, t1, t; and xo.

(7)

Let

with f(t;) = xo = second maximum of |f|. We need lower estimates of

xi = |f(&)]

be the first maximum of |f|. Then f; > Ty ~ 4.4934,
. . int ~
the first maximum of % and tp+t] > 26 >2T;.
Further tg > 7(1 — xp).

= & E DA
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Lower estimate of x,
Since xp = |f(f2)| with t
2 > |f (37)].

2w < tp < B < t3, we know

Assume that h € C3[—1,1] with B >0 . Then

o> f (5 ) _h(l).

1 4
5 55 = 157
fo h(r)dr 37 ™

o 5 = RN Ge
Banff, May 2011 19 / 20



Lower estimate of x,
Since

xo = |f(£2)| with 27 <% <t < t3, we know
o> |f (3]

Assume that h € C3[—1,1] with B >0 . Then

n>f(5) k1) 1 4

52 Teo
fo h(r)dr 37
Proof. Integration by parts yields with sin(tr)h"”’(r) < h"'(r)
1

£(t) - </0 h(r)dr) > h(1)s'“t

Since h € C3 is even and h" >0, H(0) =
Put t = gw.

Cos t

5 + h//(o) h//(l)l + sint

H'(0) =0, —h"(1) >0

= & = E DA
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Estimate of |F/(x)/G'(x)| for m=1
We have to prove (7). Using Lemma 5 and Lemma 6, (7) follows from

2 2T 4 I
> 2 s — 2 oy /ln=>1, 2T =8.9868
6V T l-x 1-x; X2

which is true for xo > % > 11—2 ; The left side is increasing in x3.
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Estimate of |F/(x)/G'(x)| for m=1
We have to prove (7). Using Lemma 5 and Lemma 6, (7) follows from

5 /2 2T 4 1
25 |n+ 2 oy ln= > 1, 2T = 8.9868
6V T l-x 1-x; X2
which is true for xo > % > 11—2 ; The left side is increasing in x3.
The estimate for m > 2 is easier. O
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