Sparse Cost Function Optimization

Petros Boufounos
petrosp@merl.com

with Sohail Bahmani and Bhiksha Raj, CMU

BIRS
March 10, 2011
CS AT A GLANCE
Compressed Sensing Measurement Model

\[M \text{ measurements} \quad y = A x \quad N \times 1 \]

- \(x \) is \(K \)-sparse or \(K \)-compressible
- \(A \) random, satisfies a restricted isometry property (RIP)
 - \(A \) has RIP of order \(2K \) with constant \(\delta \)
 - If there exists \(\delta \) s.t. for all \(2K \)-sparse \(x \):
 \[(1 - \delta) \| x \|_2^2 \leq \| A x \| \leq (1 + \delta) \| x \|_2^2 \]
- \(M = O(K \log N/K) \)
- \(A \) also has small coherence \(\mu \triangleq \max_{i \neq j} | \langle a_i, a_j \rangle | \)
Compressed Sensing Measurement Model

- x is K-sparse or K-compressible
- A random, satisfies a restricted isometry property (RIP)
 - A has RIP of order $2K$ with constant δ
 - If there exists δ s.t. for all $2K$-sparse x:
 \[
 (1 - \delta)\|x\|_2^2 \leq \|Ax\| \leq (1 + \delta)\|x\|_2^2
 \]
- $M=O(K\log N/K)$
- A also has small coherence $\mu \triangleq \max_{i \neq j} |\langle a_i, a_j \rangle|$
CS RECONSTRUCTION
CS Reconstruction

• Reconstruction using **sparse approximation**:
 – Find sparsest \(x \) such that \(y \approx Ax \)

• **Convex optimization** approach:
 – Minimize \(\ell_1 \) norm: e.g.,
 \[
 \hat{x} = \arg \min_x \|x\|_1 \text{ s.t. } y \approx Ax
 \]

• **Greedy algorithms** approach:
 – MP, OMP, ROMP, StOMP, CoSaMP, …

• If coherence \(\mu \) or RIP \(\delta \) is **small**: Exact reconstruction

Semi-ignored question:
How do we measure “\(\approx \)”?
Approximation Cost

- **Convex optimization** formulations

\[\hat{x} = \arg \min_{x} \| x \|_1 + \frac{\mu}{2} \| y - Ax \|_2^2 \]

\[\hat{x} = \arg \min_{x} \| x \|_1 \text{ s.t. } \| y - Ax \|_2^2 \leq \epsilon \]

- **Greedy pursuits** (implicit) goal

\[\hat{x} = \arg \min_{x} \| y - Ax \|_2^2 \text{ s.t. } \| x \|_0 \leq K \]

All approaches attempt to minimize \(f(x) = \| y - Ax \|_2^2 \) such that the argument \(x \) is sparse.

Can we do it for general \(f(x) \)?
SPARSITY-CONSTRAINED FUNCTION MINIMIZATION
Problem Formulation

\[\mathbf{x}^* = \arg \min_{\mathbf{x}} f(\mathbf{x}) \quad \text{s.t.} \quad \|\mathbf{x}\|_0 \leq K \]

- **Objective:** minimize an arbitrary cost function

- **Applications:**
 - Sparse logistic regression
 - Quantized and saturation-consistent Compressed Sensing
 - De-noising and Compressed Sensing with non-gaussian noise models

- **Questions:**
 - What algorithms can we use?
 - What functions can we minimize?
 - What are the conditions on \(f(\mathbf{x}) \)?
 - What guarantees can we provide?
Commonalities in Sparse Recovery Algorithms

• Most greedy and l_1 algorithms have several common steps:
 – **Maintain** a current *estimate*
 – **Compute** a *residual*
 – **Compute** a gradient, *proxy*, correlation, or some other name
 – **Update estimate** based on proxy
 – **Prune** (soft or hard threshold)
 – **Iterate**

• Key step: proxy/correlation $A^T(y-Ax)$
 – This is the *gradient* of $f(x)=||y-Ax||_2^2$
 – Can we substitute it with the general gradient $\nabla f(x)$?

YES

What **guarantees** can we prove?
What becomes of the **RIP**?
GraSP (Gradient Subspace Pursuit)

State Variables: Signal estimate, \(\hat{x} \) support estimate: \(T \)

- Initialize estimate and support:
 \[
 \hat{x} = 0, \quad T = \text{supp}(\hat{x})
 \]

- Compute Gradient at Current Estimate:
 \[
 \nabla f (\hat{X})
 \]

- Select location of largest \(2K \) gradient directions:
 \[
 \text{supp}(g|_{2K})
 \]

- Add to support set:
 \[
 \Omega = \text{supp}(g|_{2K}) \cup T
 \]

- Minimize over support:
 \[
 b = \arg \min_x f(x) \quad \text{s.t. } x_{\Omega^c} = 0
 \]

- Truncate result:
 \[
 \hat{x} = b|_K
 \]
 \[
 T = \text{supp} (b|_K)
 \]

Iterate using residual.
\[f(x) = \|y - Ax\|_2^2 \Rightarrow \textbf{CoSaMP (Compressive Sampling MP)} \] [Needell and Tropp]

State Variables: Signal estimate, \(\hat{x} \) support estimate: \(T \)

- Initialize estimate, residual and support
 \[\hat{x} = 0, \ T = \text{supp}(\hat{x}), \ r = y \]

- Correlate residual with dictionary → signal proxy
 \[\langle a_k, r \rangle = p_k \]

- Select location of largest \(2K \) correlations
 \[\Omega = \text{supp}(p|_{2K}) \cup T \]

- Add to support set
 \[\Omega = \text{supp}(p|_{2K}) \cup T \]

- Invert over support
 \[b = A_{\Omega}^{\dagger} y \]

- Truncate and compute residual
 \[T = \text{supp}(b|_{K}) \]
 \[\hat{x} = b|_{K} \]
 \[r \leftarrow y - A\hat{x} \]

Iterate using residual
CONDITIONS AND GUARANTEES
Stable Hessian Property

- Guarantees based on the Hessian of the function $H_f(x)$
- Some definitions:

 for all $\|u\|_0 \leq K$

 $A_K (u) = \sup \left\{ \frac{v^T H_f(u)v}{\|v\|^2_2} \mid \text{supp}(v) = \text{supp}(u), \text{and } v \neq 0 \right\}$

 $B_K (u) = \inf \left\{ \frac{v^T H_f(u)v}{\|v\|^2_2} \mid \text{supp}(v) = \text{supp}(u), \text{and } v \neq 0 \right\}$

- Stable Hessian Property (SHP) of order K, with constant μ_K:

 $\frac{A_K (u)}{B_K (u)} \leq \mu_K$, for all $\|u\|_0 \leq K$

- Bounds the local curvature of $f(x)$
Recovery Guarantees

- Denote the **global optimum** using x^*:
 \[x^* = \arg \min_x f(x) \text{ s.t. } \|x\|_0 \leq K \]

- Assume $f(x)$ satisfies and order $4K$ SHP with:
 \[\text{for all } \|u\|_0 \leq 4K, \quad \frac{A_{4K}(u)}{B_{4K}(u)} \leq \mu_{4K} \leq \sqrt{2} \]

- And its restriction is **convex**:
 \[\text{for all } \|u\|_0 \leq 4K, \quad B_{4K} > \epsilon \]

- Then the **estimate** after the pth iteration, $\hat{x}^{(p)}$, satisfies:
 \[\left\| \hat{x}^{(p)} - x^* \right\|_2 \leq 2^{-p} \|x^*\|_2 + \frac{4(2 + \sqrt{2})}{\epsilon} \|\nabla f(x^*)|_I\|_2 \]

 where I is the set of the largest $3K$ components of $\nabla f(x^*)$ in magnitude.
Connections to CS

- CS uses $f(x) = \|y - Ax\|_2$

- **SHP** bounds $A_K(u)$, $B_K(u)$, reduce to **RIP** bounds $(1 \pm \delta_K)$

- μ_K reduces to $(1+\delta_K)/(1-\delta_K)$

- **GraSP** reduces to **CoSaMP**

- Reconstruction guarantees reduce to classical CS guarantees
APPLICATIONS
Given: **Bit budget** B bits/sample, **Signal norm** $\|x\|_2$

- **Set quantization threshold** G
 - Implicitly sets quantization interval $\Delta = 2^{B+1}G$
 - Implicitly sets saturation rate at $2Q(G/\|x\|_2)$

- **Classical heuristic**: Set G large (avoid saturation)

 - **Wrong! Will revisit!**

- **Note**:
 - Equivalent to fixing G and varying signal amplification
 - $Q(\cdot)$ denotes the tail of the Gaussian distribution
Exploit Saturation Information

\[
\hat{x} = \arg\min_x \|y - \tilde{A}x\|_2 + \|G - A^+ x\|_2^+ + \|G + A^- x\|_2^+ + \|x\|_0 \leq K
\]

Saturation provides information:
The measurement magnitude is larger than \(G\). But how to handle it?

Option 1: Just use the measurement as if unsaturated

Option 2: Discard saturated measurements

Option 3: Treat measurement as a constraint! (consistent reconstruction)
Experimental Results

Note: optimal performance requires 10% saturation
Reconstruction Results: Real Data [Wei, Boufounos]

Synthetic Aperture Radar (SAR) acquisition

(a) CSA unsaturated
(b) CSA 30% sat.
(c) Robust 30% sat.

Loss of fine features
Significant intensity loss due to saturation
Intensity loss restored Crisper image
Reconstruction Results: Real Data, log scale

Synthetic Aperture Radar (SAR) acquisition

(a) CSA unsaturated

(b) CSA 30% sat.

(c) Robust 30% sat.

Significant Reconstruction Noise

Image model (wavelet sparsity) performs denoising
Sparse Logistic Regression

- Examples in data points d_i, each has a label l_i (±1)

- Need to find coefficients x_i that predict labels from data
 - Prediction through the logistic function
 - Feature selection: find a sparse set x

- Resulting problem is a sparse minimization:
 $$f(x) = \sum_{i=1}^{N} \log \left(1 + \exp \left(-l_i x^T d^i \right) \right)$$

- We can use GraSP!

- **Alternative:** ℓ_1 regularization (e.g., IRLS-LARS, [Lee et al, 2006]):
 $$\hat{x} = \arg \min_x f(x) + \lambda \|x\|_1$$
Simulation Results Classification Accuracy

- Data: UCI Adult Data Set
 - Goal: Predict household income $\leq 50K$ from 14 variables, 123 features

- Note: Prediction accuracy ≠ optimization performance
 - We actually also achieve a smaller sparse minimum.
Open Problems

• Several questions:
 – What is the appropriate ℓ_1 formulation?
 – What about other greedy algorithms? (e.g., OMP, IHT)
 – Can the **Stable Hessian Property** help with those?
 – What does the **SHP** really mean for $f(x)$? What about its convexity?
 – How to interpret the guarantees?
 – What other conditions can we use instead?
 • Related work, different context, by Blumensath, SCP
 – Can we derive equivalents of coherence or NSP?
 – Can we accommodate functions that are not twice differentiable?

Questions/Comments?

More info: petrosb@merl.com