Weighted ℓ_1 Minimization: Stability, robustness, and some implications

Hassan Mansour

University of British Columbia, Vancouver, Canada

Banff Workshop on Sparse and Low Rank Approximation - March 2011
Collaboration

Joint work with:

- Michael Friedlander
- Rayan Saab
- Övgür Yılmaz
Outline

Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result
Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements $y = Ax + e$.
- If A has the RIP with $\delta_{2k} < \sqrt{2} - 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$,
- Suppose k, n and N are such that ℓ_1-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?
Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements $y = Ax + e$.
- If A has the RIP with $\delta_{2k} < \sqrt{2} - 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}$, $a > 1$,
- Suppose k, n and N are such that ℓ_1-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Definition: Restricted Isometry Property (RIP)

The RIP constant δ_k is defined as the smallest constant such that $\forall x \in \Sigma_k^N$

$$
(1 - \delta_k)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_k)\|x\|_2^2,
$$
Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements $y = Ax + e$.
- If A has the RIP with $\delta_{2k} < \sqrt{2} - 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$, then ℓ_1-minimization recovers a stable and robust approximation x^* of x.
- Suppose k, n and N are such that ℓ_1-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Constrained ℓ_1-minimization

- $\min_{u \in \mathbb{R}^N} \|u\|_1$ subject to $\|Au - y\|_2 \leq \|e\|_2$, $k \lesssim n/\log(N/n)$
- $\|x^* - x\|_2 \leq C_0\|e\|_2^2 + C_1 k^{-1/2}\|x - x_k\|_1$
Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements $y = Ax + e$.
- If A has the RIP with $\delta_{2k} < \sqrt{2} - 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$, then ℓ_1-minimization recovers a stable and robust approximation x^* of x.
- Suppose k, n and N are such that ℓ_1-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Failed recovery and prior information

- Eg. when $k > \hat{k} \approx n/\log(N/n)$
- Eg. indices 1, 3, and 6 are non-zero.
Motivation

- We want to recover a k-sparse signal $x \in \mathbb{R}^N$.
- Given $n \ll N$ linear and noisy measurements $y = Ax + e$.
- If A has the RIP with $\delta_{2k} < \sqrt{2} - 1$ or $\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1$, then ℓ_1-minimization recovers a stable and robust approximation x^* of x.
- Suppose k, n and N are such that ℓ_1-minimization fails to recover x, and we have prior information on the support of x.
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?

Failed recovery and prior information

- Eg. when $k > \hat{k} \approx n / \log(N/n)$
- Eg. indices 1, 3, and 6 are non-zero.
Motivation

- We want to recover a \(k \)-sparse signal \(x \in \mathbb{R}^N \).
- Given \(n \ll N \) linear and noisy measurements \(y = Ax + e \).
- If \(A \) has the RIP with \(\delta_{2k} < \sqrt{2} - 1 \) or \(\delta_{(a+1)k} < \frac{a-1}{a+1}, a > 1 \), then \(\ell_1 \)-minimization recovers a stable and robust approximation \(x^* \) of \(x \).
- Suppose \(k, n \) and \(N \) are such that \(\ell_1 \)-minimization fails to recover \(x \), and we have prior information on the support of \(x \).
- How do we incorporate this knowledge in the recovery algorithm while keeping the measurement process non-adaptive?
Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of the signal, for example:

- Natural images have large DCT coefficients that are localized in the low frequency subbands.
- Video sequences are temporally correlated, resulting in a shared subset of their support.
- Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of the signal, for example:

- Natural images have large DCT coefficients that are localized in the low frequency subbands.
- Video sequences are temporally correlated, resulting in a shared subset of their support.
- Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, ...
Signals with Prior Information

- In many applications, it is possible to draw an estimate of the support of the signal, for example:
 - Natural images have large DCT coefficients that are localized in the low frequency subbands.
 - Video sequences are temporally correlated, resulting in a shared subset of their support.
 - Other signals such as seismic data, \ldots

- But
Signals with Prior Information

In many applications, it is possible to draw an estimate of the support of the signal, for example:

- Natural images have large DCT coefficients that are localized in the low frequency subbands.
- Video sequences are temporally correlated, resulting in a shared subset of their support.
- Other signals such as seismic data, . . .

But, the ℓ_1 minimization formulation is non-adaptive, i.e., aside from sparsity, no prior information on x is used in the recovery.
Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result
Suppose that x is a k-sparse signal supported on an unknown set T_0. Let \tilde{T} be a known support estimate that is partially accurate. We want to:

1. Recover x by incorporating \tilde{T} in the recovery algorithm.
2. Obtain recovery guarantees based on the size and accuracy of \tilde{T}.

Our approach: weighted ℓ_1 minimization.
Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0.
- Let \tilde{T} be a known support estimate that is partially accurate.
- We want to:
 - Recover x by incorporating \tilde{T} in the recovery algorithm.
 - Obtain recovery guarantees based on the size and accuracy of \tilde{T}.
- Our approach: weighted ℓ_1 minimization.
Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0.
- Let \tilde{T} be a known support estimate that is partially accurate.
- We want to:
 1. Recover x by incorporating \tilde{T} in the recovery algorithm.
 2. Obtain recovery guarantees based on the size and accuracy of \tilde{T}.

Our approach: weighted ℓ_1 minimization.
Problem Setup

- Suppose that x is a k-sparse signal supported on an unknown set T_0.
- Let \tilde{T} be a known support estimate that is partially accurate.
- We want to:
 1. Recover x by incorporating \tilde{T} in the recovery algorithm.
 2. Obtain recovery guarantees based on the size and accuracy of \tilde{T}.
- Our approach: weighted ℓ_1 minimization.
Weighted ℓ_1 Minimization

Given a set of measurements y, solve

$$\min_x \|x\|_{1,w} \text{ subject to } \|Ax - y\|_2 \leq \epsilon \quad \text{with} \quad w_i = \begin{cases} 1, & i \in \tilde{T}^c, \\ \omega, & i \in \tilde{T}. \end{cases}$$

where $0 \leq \omega \leq 1$ and $\|x\|_{1,w} := \sum_i w_i |x_i|$, $\|e\|_2^2 \leq \epsilon$.

\[\text{Diagram showing intervals } T_0, \tilde{T}, T^c, \tilde{T} \cap T_0, \tilde{T} \cap T^c, T_0^c, \text{ and } w.\]
Contributions

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T}.

- We show that if at least 50% of \tilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds

- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.
Contributions

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T}.

- We show that if at least 50% of \tilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.

- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.
Contributions

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T}.

- We show that if at least 50% of \tilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.

- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.
Contributions

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T}.

- We show that if at least 50% of \tilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.

- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.
Contributions

- We adopt weighted ℓ_1 minimization and derive stability and robustness guarantees for the recovery of a signal x with partial support estimate \tilde{T}.

- We show that if at least 50% of \tilde{T} is accurate, then weighted ℓ_1 minimization guarantees recovery with
 - weaker RIP conditions
 - smaller recovery error bounds.

- We demonstrate through extensive experiments that assigning weights $0 < \omega < 1$ on \tilde{T} results in the best reconstruction performance, especially if x is compressible.
Related Work

- **Borries et al. '07**: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.

- **Khajehnejad et al. '09**: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.

- **Vaswani et al. '10**: propose weighted ℓ_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.

- **L. Jacques '10**: extended Vaswani et al.’s work to the noisy measurement vector case.
Related Work

- **Borries et al. ’07**: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.

- **Khajehnejad et al. ’09**: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.

- **Vaswani et al. ’10**: propose weighted ℓ_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.

- **L. Jacques ’10**: extended Vaswani et al.’s work to the noisy measurement vector case.
Related Work

- **Borries et al. '07**: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.

- **Khajehnejad et al. '09**: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.

- **Vaswani et al. '10**: propose weighted ℓ_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.

- **L. Jacques '10**: extended Vaswani et al.'s work to the noisy measurement vector case.
Related Work

- **Borries et al. '07**: empirically demonstrate that x is recoverable with s fewer measurements by setting $\omega = 0$ on a known subset of the support of size s.

- **Khajehnejad et al. '09**: find a class of signals x, defined by a probabilistic model on sparsity and by the weight vector, that can be recovered with high probability using weighted ℓ_1 minimization.

- **Vaswani et al. '10**: propose weighted ℓ_1 minimization with zero weights and find weaker sufficient recovery conditions in the noise-free case.

- **L. Jacques '10**: extended Vaswani et al.'s work to the noisy measurement vector case.
Weighted ℓ_1 Minimization

Find the vector x from a set of measurements y using the support estimate \tilde{T} by solving

$$
\min_x \|x\|_{1,w} \text{ subject to } \|Ax - y\|_2 \leq \epsilon \quad \text{with} \quad w_i = \begin{cases}
1, & i \in \tilde{T}^c, \\
\omega, & i \in \tilde{T}.
\end{cases}
$$

where $0 \leq \omega \leq 1$ and $\|x\|_{1,w} := \sum_i w_i |x_i|$.

Stability and Robustness

- Let \(x \) be in \(\mathbb{R}^N \) and let \(x_k \) be its best \(k \)-term approximation, supported on \(T_0 \).
- Let \(|\tilde{T}| = \rho k \) and define \(\alpha = \frac{|\tilde{T} \cap T_0|}{|\tilde{T}|} \), and \(0 \leq \omega \leq 1 \).
Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0.
- Let $|\tilde{T}| = \rho k$ and define $\alpha = \frac{|\tilde{T} \cap T_0|}{|\tilde{T}|}$, and $0 \leq \omega \leq 1$.

![Diagram showing sets and their intersections]
Stability and Robustness

- Let x be in \mathbb{R}^N and let x_k be its best k-term approximation, supported on T_0.
- Let $|\tilde{T}| = \rho k$ and define $\alpha = \frac{|\tilde{T} \cap T_0|}{|\tilde{T}|}$, and $0 \leq \omega \leq 1$.

Theorem (Main Result)

Suppose there exists an $a \in \frac{1}{k} \mathbb{Z}$, with $a \geq (1 - \alpha)\rho$, $a > 1$, and that A satisfies

$$\delta_{ak} + a\gamma\delta_{(a+1)k} < a\gamma - 1.$$

Then the solution x^* to the weighted ℓ_1 problem obeys

$$\|x^* - x\|_2 \leq C'_0\epsilon + C'_1k^{-1/2}\left(\omega\|x_{T_0^c}\|_1 + (1 - \omega)\|x_{\tilde{T}^c \cap T_0^c}\|_1\right).$$

$$\gamma = \frac{1}{(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2}$$
Sufficient Recovery Condition

It is sufficient to have:

\[\delta(a+1)k < \hat{\delta}(\omega) := \frac{a-(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2}{a+(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2} \]

\[\delta(a+1)k < \hat{\delta}(1) := \frac{a-1}{a+1} \]
Sufficient Recovery Condition

It is sufficient to have:

- \(\hat{\delta}(a+1)k < \hat{\delta}(\omega) := \frac{a - (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})^2}{a + (\omega + (1-\omega)\sqrt{1+\rho - 2\alpha\rho})^2} \)

- \(\delta(a+1)k < \hat{\delta}(1) := \frac{a-1}{a+1} \)
Sufficient Recovery Condition

It is sufficient to have:

- \(\hat{\delta}(a+1)k < \hat{\delta}(\omega) := \frac{a-(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2}{a+(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2} \)

- \(\hat{\delta}(a+1)k < \hat{\delta}(1) := \frac{a-1}{a+1} \)
Sufficient Recovery Condition

It is sufficient to have:

1. \(\delta(a+1)k < \hat{\delta}(\omega) := \frac{a-(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2}{a+(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2} \)

2. \(\delta(a+1)k < \hat{\delta}(1) := \frac{a-1}{a+1} \)

Take for example: \(\hat{\delta}(1) = 0.6667 \), and \(\omega = 0.5, \rho = 1 \),

- if \(\alpha = 0.7 \), then \(\hat{\delta}(\omega) = 0.7279 \).
- if \(\alpha = 0.3 \), then \(\hat{\delta}(\omega) = 0.6151 \).
Sufficient Recovery Condition

It is sufficient to have:

1. \(\tilde{\delta}(a+1)k < \hat{\delta}(\omega) := \frac{a-(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2}{a+(\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho})^2} \)

2. \(\delta(a+1)k < \hat{\delta}^{(1)} := \frac{a-1}{a+1} \)

Take for example: \(\hat{\delta}^{(1)} = 0.6667 \), and \(\omega = 0.5, \rho = 1 \),

- if \(\alpha = 0.7 \), then \(\hat{\delta}^{(\omega)} = 0.7279 \).
- if \(\alpha = 0.3 \), then \(\hat{\delta}^{(\omega)} = 0.6151 \).
Error Bound Constants

Measurement noise constant C'_0:

$$C'_0 = \frac{2 \left(1 + (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}) / \sqrt{a}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$

$$C_0 = \frac{2 \left(1 + 1/\sqrt{a}\right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$
Error Bound Constants

Measurement noise constant C'_0:

$$C'_0 = \frac{2 \left(1 + (\omega + (1 - \omega) \sqrt{1 + \rho - 2\alpha \rho}) / \sqrt{a} \right)}{\sqrt{1 - \delta_{(a+1)k} - \frac{\omega + (1 - \omega) \sqrt{1 + \rho - 2\alpha \rho}}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}}$$

$$C_0 = \frac{2 \left(1 + \frac{1}{\sqrt{a}} \right)}{\sqrt{1 - \delta_{(a+1)k} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}}$$
Error Bound Constants

Measurement noise constant C'_0:

$$C'_0 = \frac{2 \left(1 + (\omega + (1 - \omega)) \sqrt{1 + \rho - 2 \alpha \rho} \right) / \sqrt{a}}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1 - \omega) \sqrt{1 + \rho - 2 \alpha \rho}}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$

$$C_0 = \frac{2 \left(1 + 1 / \sqrt{a} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$
Error Bound Constants

Measurement noise constant C'_0:

\[
C'_0 = \frac{2 \left(1 + (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}) / \sqrt{a}\right)}{\sqrt{1 - \delta(a+1)k} - \frac{\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho}}{\sqrt{a}} \sqrt{1 + \delta ak}}
\]

\[
C_0 = \frac{2 \left(1 + 1/\sqrt{a}\right)}{\sqrt{1 - \delta(a+1)k} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta ak}}
\]

Take for example: $C_0 = 5.6048$, and $\omega = 0.5$, $\rho = 1$,

- if $\alpha = 0.7$, then $C'_0 = 4.9178$.
- if $\alpha = 0.3$, then $C'_0 = 6.2734$.
Error Bound Constants

Measurement noise constant C'_0:

\[
C'_0 = \frac{2 \left(1 + (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho}) / \sqrt{a} \right)}{\sqrt{1 - \delta(a+1)k} - \frac{\omega+(1-\omega)\sqrt{1+\rho-2\alpha\rho}}{\sqrt{a}} \sqrt{1 + \delta ak}}
\]

\[
C_0 = \frac{2 \left(1 + 1/\sqrt{a} \right)}{\sqrt{1 - \delta(a+1)k} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta ak}}
\]

Take for example: $C_0 = 5.6048$, and $\omega = 0.5$, $\rho = 1$,

- if $\alpha = 0.7$, then $C'_0 = 4.9178$.
- if $\alpha = 0.3$, then $C'_0 = 6.2734$.

Error Bound Constants

Signal compressibility constant C'_1:

\[C'_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega(1-\omega)}{\sqrt{a}} \sqrt{1 + \delta_{ak}}} \]

\[C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta_{ak}}} \]
Signal compressibility constant C'_1:

$$C'_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega(1-\omega)\sqrt{1+\rho-2\alpha\rho}}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$

$$C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$
Error Bound Constants

Signal compressibility constant C'_1:

\[C'_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta ak} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1-\omega) \sqrt{1+\rho-2\alpha \rho}}{\sqrt{a}} \sqrt{1 + \delta ak}} \]

\[C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta ak} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta ak}} \]
Error Bound Constants

Signal compressibility constant C'_1:

\[
C'_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1-\omega)\sqrt{1+\rho-2\alpha\rho}}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}
\]

\[
C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}
\]

Take for example: $C_1 = 3.4629$, and $\omega = 0.5$, $\rho = 1$,

- if $\alpha = 0.7$, then $C'_1 = 3.1480$.
- if $\alpha = 0.3$, then $C'_1 = 3.7693$.
Error Bound Constants

Signal compressibility constant C'_1:

$$C'_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{\omega + (1-\omega)\sqrt{1+\rho-2\alpha\rho}}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$

$$C_1 = \frac{2a^{-1/2} \left(\sqrt{1 - \delta_{(a+1)k}} + \sqrt{1 + \delta_{ak}} \right)}{\sqrt{1 - \delta_{(a+1)k}} - \frac{1}{\sqrt{a}} \sqrt{1 + \delta_{ak}}}$$

Take for example: $C_1 = 3.4629$, and $\omega = 0.5$, $\rho = 1$,

- if $\alpha = 0.7$, then $C'_1 = 3.1480$.
- if $\alpha = 0.3$, then $C'_1 = 3.7693$.
Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result
Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with $k = 40$, and $N = 500$.
Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with $k = 40$, and $N = 500$.

- The noise free case:

![Graphs showing SNR vs. number of measurements for different weights α. The graphs demonstrate the impact of varying α on the recovery of sparse signals, with the noise free case highlighted.]
Recovery of Sparse Signals

- SNR averaged over 20 experiments for k-sparse signals x with $k = 40$, and $N = 500$.

- The noisy measurement vector case
Recovery of Compressible Signals

- SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, \ldots, N\}$ and $p = 1.5$. We take $n = 100$ and $N = 500$.
Recovery of Compressible Signals

- SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, \ldots, N\}$ and $p = 1.5$. We take $n = 100$ and $N = 500$.

- The noise free case:
Recovery of Compressible Signals

- SNR averaged over 10 experiments for signals x whose coefficients decay like j^{-p} where $j \in \{1, \ldots, N\}$ and $p = 1.5$. We take $n = 100$ and $N = 500$.

- The noisy measurement vector case
Discussion

- Intermediate values of the weight $\omega \approx 0.5$ result in the highest SNR even when $\alpha < 0.5$.

- Recall the recovery error bound

$$\|x^* - x\|_2 \leq C'_0(\omega)\epsilon + C'_1(\omega)k^{-1/2} \left(\omega\|x_{T_0^c}\|_1 + (1 - \omega)\|x_{\tilde{T}_c \cap T_0^c}\|_1 \right).$$

- As ω goes to zero,
 - the constant $C'_1(\omega)$ increases
 - the term $\omega\|x_{T_0^c}\|_1 + (1 - \omega)\|x_{\tilde{T}_c \cap T_0^c}\|_1$ decreases

- There exists $0 < \omega < 1$ that minimizes their product.
Discussion

- Intermediate values of the weight $\omega \approx 0.5$ result in the highest SNR even when $\alpha < 0.5$.

- Recall the recovery error bound

$$
\|x^* - x\|_2 \leq C'_0(\omega)\epsilon + C'_1(\omega)k^{-1/2} \left(\omega \|x_{T_0^c}\|_1 + (1 - \omega)\|x_{\tilde{T}_c \cap T_0^c}\|_1 \right).
$$

- As ω goes to zero,
 - the constant $C'_1(\omega)$ increases
 - the term $\omega \|x_{T_0^c}\|_1 + (1 - \omega)\|x_{\tilde{T}_c \cap T_0^c}\|_1$ decreases

- There exists $0 < \omega < 1$ that minimizes their product.
Discussion

- Intermediate values of the weight $\omega \approx 0.5$ result in the highest SNR even when $\alpha < 0.5$.

- Recall the recovery error bound

$$\|x^* - x\|_2 \leq C'_0(\omega)\epsilon + C'_1(\omega)k^{-1/2} \left(\omega \|x_{T^c_0}\|_1 + (1 - \omega)\|x_{\tilde{T}^c \cap T^c_0}\|_1 \right).$$

- As ω goes to zero,
 - the constant $C'_1(\omega)$ increases
 - the term $\omega \|x_{T^c_0}\|_1 + (1 - \omega)\|x_{\tilde{T}^c \cap T^c_0}\|_1$ decreases

- There exists $0 < \omega < 1$ that minimizes their product.
Video Compressed Sensing Example

- A video sequence is a collection of images acquired at periodic instances in time.
- For each video frame j, collect n_j CCD readings sampled randomly from the CCD array.
- Use weighted ℓ_1 minimization to recover x_j with $\tilde{T}_j = V_{j-1} \cup V_{j-2}$.
Video Compressed Sensing Example

- A video sequence is a collection of images acquired at periodic instances in time.
- For each video frame j, collect n_j CCD readings sampled randomly from the CCD array.
- Use weighted ℓ_1 minimization to recover x_j with $\tilde{T}_j = V_{j-1} \cup V_{j-2}$.

![Image of video frames with corresponding weight maps]
Video Compressed Sensing Example

- A video sequence is a collection of images acquired at periodic instances in time.
- For each video frame j, collect n_j CCD readings sampled randomly from the CCD array.
- Use weighted ℓ_1 minimization to recover x_j with $\tilde{T}_j = V_{j-1} \cup V_{j-2}$.
Video Compressed Sensing Results

- $n_0 = N/2$, $n_j = N/2.2$ for $j = 1, 2, \ldots$
Part 1: Introduction and Overview

Part 2: Stability and Robustness of Weighted ℓ_1 Minimization

Part 3: Experimental Results and Stylized Applications

Part 3: Some implications of the weighted ℓ_1 result
Some Implications

- Weighted ℓ_1 minimization can recover less sparse signals than standard ℓ_1 when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with weaker RIP conditions and smaller error bounds.

Some questions:
- How/when can we find the support estimate \tilde{T}?
- Can we draw a more accurate \tilde{T} after solving the weighted ℓ_1 minimization problem?
- How would an iterative weighted ℓ_1 algorithm with fixed weights perform?
Some Implications

- Weighted ℓ_1 minimization can recover less sparse signals than standard ℓ_1 when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with weaker RIP conditions and smaller error bounds.
- Some questions:
 - How/when can we find the support estimate \tilde{T}?
 - Can we draw a more accurate \tilde{T} after solving the weighted ℓ_1 minimization problem?
 - How would an iterative weighted ℓ_1 algorithm with fixed weights perform?
Some Implications

- Weighted ℓ_1 minimization can recover less sparse signals than standard ℓ_1 when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with weaker RIP conditions and smaller error bounds.

Some questions:

- How/when can we find the support estimate \tilde{T}?
- Can we draw a more accurate \tilde{T} after solving the weighted ℓ_1 minimization problem?
- How would an iterative weighted ℓ_1 algorithm with fixed weights perform?
Some Implications

- Weighted ℓ_1 minimization can recover less sparse signals than standard ℓ_1 when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with weaker RIP conditions and smaller error bounds.
- Some questions:
 - How/when can we find the support estimate \tilde{T}?
 - Can we draw a more accurate T after solving the weighted ℓ_1 minimization problem?
 - How would an iterative weighted ℓ_1 algorithm with fixed weights perform?
Some Implications

- Weighted ℓ_1 minimization can recover less sparse signals than standard ℓ_1 when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with weaker RIP conditions and smaller error bounds.
- Some questions:
 - How/when can we find the support estimate \tilde{T}?
 - Can we draw a more accurate \tilde{T} after solving the weighted ℓ_1 minimization problem?
 - How would an iterative weighted ℓ_1 algorithm with fixed weights perform?
Some Implications

- Weighted ℓ_1 minimization can recover less sparse signals than standard ℓ_1 when enough prior information is available.
- We showed that the recovery is stable and robust.
- We also showed that if at least 50% of the support estimate is accurate, then the recovery is guaranteed with weaker RIP conditions and smaller error bounds.

Some questions:
- How/when can we find the support estimate \tilde{T}?
- Can we draw a more accurate \tilde{T} after solving the weighted ℓ_1 minimization problem?
- How would an iterative weighted ℓ_1 algorithm with fixed weights perform?
Work in Progress - Partial Support Recovery (1)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where

 $$|x(s_0)| \geq (\eta_0 + 1)\|x_{T_0^c}\|_1, \quad T_0 = \text{supp}(x|_{k_0})$$

- Then

 $$\text{supp}(x|_{s_0}) \subseteq \text{supp}(x_0^*|_{k_0}),$$

where x_0^* is the solution to the ℓ_1 minimization problem.
Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where
 \[|x(s_0)| \geq (\eta_0 + 1)\|x_{T_0^c}\|_1, \quad T_0 = \text{supp}(x|_{k_0}) \]

- Then
 \[\text{supp}(x|_{s_0}) \subseteq \text{supp}(x^*_0|_{k_0}), \]

where x^*_0 is the solution to the ℓ_1 minimization problem.
Work in Progress - Partial Support Recovery (1)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where

 $$|x(s_0)| \geq (\eta_0 + 1)\|x_{T_0^c}\|_1, \quad T_0 = \text{supp}(x|_{k_0})$$

- Then

 $$\text{supp}(x|_{s_0}) \subseteq \text{supp}(x_0^*|_{k_0}),$$

where x_0^* is the solution to the ℓ_1 minimization problem.
Work in Progress - Partial Support Recovery (1)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If for some $k_0 < k$, A has $\delta_{(a+1)k_0} < \frac{a-1}{a+1}$
- And if x decays such that there exists an $s_0 \leq k_0$ where
 \[|x(s_0)| \geq (\eta_0 + 1)\|x_{T_0^c}\|_1, \quad T_0 = \text{supp}(x|_{k_0}) \]
- Then
 \[\text{supp}(x|_{s_0}) \subseteq \text{supp}(x_0^*|_{k_0}), \]
 where x_0^* is the solution to the ℓ_1 minimization problem.
Work in Progress - Partial Support Recovery (2)

Let \(x \in \mathbb{R}^N \) be \(k \)-sparse and suppose the measurement matrix \(A \) is such that \(\ell_1 \) minimization cannot recover \(x \).

- For some \(k_0 \leq k_1 < k \), denote by \(T_1 = \text{supp}(x|_{k_1}) \) and \(\tilde{T}_1 = \text{supp}(x_0^*|_{k_1}) \)
- If \(A \) has
 \[
 \delta(a+1)k_1 < \frac{a - (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})}{a + (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})},
 \]
where \(0 < \omega < 1 \), \(\alpha = \frac{|\tilde{T}_1 \cap T_1|}{|T_1|} \), and \(\rho = |\tilde{T}_1| \)
- And if \(x \) decays such that there exists an \(s_1 \leq k_1 \) where
 \[
 |x(s_1)| \geq \eta_1(\omega\|x_{T_1^c}\|_1 + (1 - \omega)\|x_{T_1^c \cap \tilde{T}_1^c}\|_1) + \|x_{T_1^c}\|
 \]
- Then
 \[
 \text{supp}(x|_{s_1}) \subseteq \text{supp}(x_1^*|_{k_1}),
 \]
where \(x_1^* \) is the solution to the weighted \(\ell_1 \) minimization problem with support estimate \(\tilde{T}_1 \).
Work in Progress - Partial Support Recovery (2)

Let \(x \in \mathbb{R}^N \) be \(k \)-sparse and suppose the measurement matrix \(A \) is such that \(\ell_1 \) minimization cannot recover \(x \).

- For some \(k_0 \leq k_1 < k \), denote by \(T_1 = \text{supp}(x|_{k_1}) \) and \(\tilde{T}_1 = \text{supp}(x_0^*|_{k_1}) \).
- If \(A \) has
 \[
 \delta_{(a+1)k_1} < \frac{a - (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})}{a + (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})},
 \]
 where \(0 < \omega < 1 \), \(\alpha = \frac{|\tilde{T}_1 \cap T_1|}{|\tilde{T}_1|} \), and \(\rho = |\tilde{T}_1| \).
- And if \(x \) decays such that there exists an \(s_1 \leq k_1 \) where
 \[
 |x(s_1)| \geq \eta_1(\omega\|x_{T_1^c}\|_1 + (1 - \omega)\|x_{T_1^c \cap \tilde{T}_1^c}\|_1) + \|x_{T_1^c}\|
 \]
 Then
 \[
 \text{supp}(x|_{s_1}) \subseteq \text{supp}(x_1^*|_{k_1}),
 \]
 where \(x_1^* \) is the solution to the weighted \(\ell_1 \) minimization problem with support estimate \(\tilde{T}_1 \).
Work in Progress - Partial Support Recovery (2)

Let \(x \in \mathbb{R}^N \) be \(k \)-sparse and suppose the measurement matrix \(A \) is such that \(\ell_1 \) minimization cannot recover \(x \).

- For some \(k_0 \leq k_1 < k \), denote by \(T_1 = \text{supp}(x|_{k_1}) \) and \(\tilde{T}_1 = \text{supp}(x^*_0|_{k_1}) \).
- If \(A \) has
 \[
 \delta(a+1)k_1 < \frac{a - (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})}{a + (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})},
 \]
 where \(0 < \omega < 1 \), \(\alpha = \frac{|\tilde{T}_1 \cap T_1|}{|\tilde{T}_1|} \), and \(\rho = |\tilde{T}_1| \).
- And if \(x \) decays such that there exists an \(s_1 \leq k_1 \) where
 \[
 |x(s_1)| \geq \eta_1(\omega\|x_{T_1^c}\|_1 + (1 - \omega)\|x_{T_1^c \cap \tilde{T}_1^c}\|_1) + \|x_{T_1^c}\|
 \]
 Then
 \[
 \text{supp}(x|_{s_1}) \subseteq \text{supp}(x^*_1|_{k_1}),
 \]
 where \(x^*_1 \) is the solution to the weighted \(\ell_1 \) minimization problem with support estimate \(\tilde{T}_1 \).
Work in Progress - Partial Support Recovery (2)

Let \(x \in \mathbb{R}^N \) be \(k \)-sparse and suppose the measurement matrix \(A \) is such that \(\ell_1 \) minimization cannot recover \(x \).

- For some \(k_0 \leq k_1 < k \), denote by \(T_1 = \text{supp}(x|_{k_1}) \) and \(\tilde{T}_1 = \text{supp}(x^*_0|_{k_1}) \).
- If \(A \) has
 \[\delta(a+1)k_1 < \frac{a - (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})}{a + (\omega + (1 - \omega)\sqrt{1 + \rho - 2\alpha\rho})}, \]
 where \(0 < \omega < 1 \), \(\alpha = \frac{|\tilde{T}_1 \cap T_1|}{|\tilde{T}_1|} \), and \(\rho = |\tilde{T}_1| \).
- And if \(x \) decays such that there exists an \(s_1 \leq k_1 \) where
 \[|x(s_1)| \geq \eta_1(\omega\|x_{T_1^c}\|_1 + (1 - \omega)\|x_{T_1^c \cap \tilde{T}_1^c}\|_1) + \|x_{T_1^c}\| \]
 then
 \[\text{supp}(x|_{s_1}) \subseteq \text{supp}(x^*_1|_{k_1}), \]
 where \(x^*_1 \) is the solution to the weighted \(\ell_1 \) minimization problem with support estimate \(\tilde{T}_1 \).
Work in Progress - Partial Support Recovery (3)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \geq s_0$.
- Assuming x decays according to weak ℓ_p, the above condition requires $p \geq 3!$.
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?
Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \geq s_0$.
- Assuming x decays according to weak ℓ_p, the above condition requires $p \geq 3$!
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?
Work in Progress - Partial Support Recovery (3)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \geq s_0$.
- Assuming x decays according to weak ℓ_p, the above condition requires $p \geq 3$!
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?
Work in Progress - Partial Support Recovery (3)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \geq s_0$.
- Assuming x decays according to weak ℓ_p, the above condition requires $p \geq 3$!
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?
Work in Progress - Partial Support Recovery (3)

Let $x \in \mathbb{R}^N$ be k-sparse and suppose the measurement matrix A is such that ℓ_1 minimization cannot recover x.

- If $\alpha > 0.5$ and $\omega < 1$, then $s_1 \geq s_0$.
- Assuming x decays according to weak ℓ_p, the above condition requires $p \geq 3$!
- More conditions on signal decay are required to ensure $s_1 > s_0$.
- The derived conditions are very pessimistic compared to the experimental results!
- But what if we keep iterating?
Iterative weighted ℓ_1 algorithm (work in progress)

1. Solve an initial ℓ_1 minimization problem to obtain a support estimate.
2. Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
3. Obtain a new support estimate.
4. Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.
5. Iterate until convergence.
Iterative weighted ℓ_1 algorithm (work in progress)

1. Solve an initial ℓ_1 minimization problem to obtain a support estimate.
2. Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
3. Obtain a new support estimate.
4. Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.
5. Iterate until convergence.
Iterative weighted ℓ_1 algorithm (work in progress)

1. Solve an initial ℓ_1 minimization problem to obtain a support estimate.
2. Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
3. Obtain a new support estimate.
 - Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.
4. Iterate until convergence.
Iterative weighted ℓ_1 algorithm (work in progress)

1. Solve an initial ℓ_1 minimization problem to obtain a support estimate.
2. Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
3. Obtain a new support estimate.
4. Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.
5. Iterate until convergence.
Iterative weighted ℓ_1 algorithm (work in progress)

1. Solve an initial ℓ_1 minimization problem to obtain a support estimate.
2. Solve weighted ℓ_1 minimization with weight equal to 0.5 on the previous support estimate.
3. Obtain a new support estimate.
4. Solve weighted ℓ_1 minimization with
 - weight equal to 0 on the intersection of the two support estimates
 - weight equal to 0.5 on the new support estimate.
5. Iterate until convergence.
Iterative weighted ℓ_1 algorithm (work in progress)

1: **Input** $b = Ax$
2: **Output** $x^{(t)}$
3: **Initialize** $\hat{p} = 0.99, \hat{k} = n \log(N/n)/2, \omega_1 = 0.5, \omega_2 = 0,$
 $T_1 = \emptyset, T_2 = \emptyset, \Omega = \emptyset,$
 $l = 0, t = 0, s^{(0)} = 0, x^{(0)} = 0$
4: **while** $\|x^{(t)} - x^{(t-1)}\|_2 \leq Tol\|x^{t-1}\|_2$ **do**
5: $t = t + 1$
6: $W = \mathbf{1}$
7: $\Omega = \text{supp}(x^{(t-1)}|_{s^{(t-1)}})$
8: $T_2 = T_1 \cap \Omega$
9: $W_{T_1} = \omega_1, W_{T_2} = \omega_2$
10: $x^{(t)} = \arg\min_u \|u\|_{1,W}$ s.t. $Au = b$
11: $l = \min_{\Lambda} |\Lambda|$ s.t. $\|x^{(t)}_{\Lambda}\|_2 \geq \hat{p}\|x^{(t)}\|_2$
12: $s^{(t)} = \min\{l, \hat{k}\}$
13: $T_1 = \text{supp}(x^{(t)}|_{s^{(t)}})$
14: **end while**
Iterative weighted \(\ell_1 \) algorithm (work in progress)

\(N = 1000 \)
Iterative weighted ℓ_1 algorithm (work in progress)

$N = 2000$
Conclusion

- It is not necessary to apply weights inversely proportional to the coefficient magnitude of the signal.
- Signal classes are very strict, experiments indicate more general classes are available.
- Consider compressible signals and noisy measurements.
Conclusion

- It is not necessary to apply weights inversely proportional to the coefficient magnitude of the signal.
- Signal classes are very strict, experiments indicate more general classes are available.
- Consider compressible signals and noisy measurements.
Conclusion

- It is not necessary to apply weights inversely proportional to the coefficient magnitude of the signal.
- Signal classes are very strict, experiments indicate more general classes are available.
- Consider compressible signals and noisy measurements.
Thank you!

Partial funding provided by NSERC DNOISE II CRD.