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What is filtering (or data assimilation)?
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1. Forecast (Prediction)

tm+1tm

observation (vm+1)

true signal

um+1- (prior)
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2. Analysis (Correction)

The correction step is an application of Bayesian update

p(u+m+1) ≡ p(u−m+1|vm+1) ∝ p(u−m+1)p(vm+1|u−m+1)

When Gaussianity and linearity are assumed, one obtains the
Kalman filter.
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Difficulties of tropical weather prediction:

◮ The presence of multiple scales processes without clear
scale gap: cumulus clouds (1-2 km), mesoscale convective
systems (5-100 km), equatorial synoptic scale (1000 km),
convectively coupled Kelvin waves and two-days waves, and
planetary scale such as the MJO.
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Difficulties of tropical weather prediction:

◮ The presence of multiple scales processes without clear
scale gap: cumulus clouds (1-2 km), mesoscale convective
systems (5-100 km), equatorial synoptic scale (1000 km),
convectively coupled Kelvin waves and two-days waves, and
planetary scale such as the MJO.

◮ There are intermittent behavior in the smaller scale
processes; this makes the classical stochastic averaging
technique not very useful.

◮ Sparsely observed wind velocity field due to limited
radio-sounding devices in the tropical region. On the other
hand, mass data (temperature, humidity, and pressure) are
horizontally plentifully observed from satellite measurement.

◮ Various data assimilation techniques are successful for
midlatitude weather dynamics but they may not be so
successful due to all these issues.
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Research Program:

Our goal is to design data assimilation (filtering scheme) that addresses these
issues.

◮ Complex Dynamical Systems with Model Errors (SPEKF):
Majda, Harlim, and Gershgorin, Mathematical Strategies for Filtering

Turbulent Dynamical Systems, Discrete Contin. Dynam. Syst. A, 27(2),
441-486, 2010.
Majda and Harlim, Systematic Strategies for Real Time Filtering of

Turbulent Signals in Complex Systems, Cambridge University Press.
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◮ Complex Dynamical Systems with Model Errors (SPEKF):
Majda, Harlim, and Gershgorin, Mathematical Strategies for Filtering

Turbulent Dynamical Systems, Discrete Contin. Dynam. Syst. A, 27(2),
441-486, 2010.
Majda and Harlim, Systematic Strategies for Real Time Filtering of

Turbulent Signals in Complex Systems, Cambridge University Press.

◮ Effects of Interpolated Data:
Harlim, Interpolating Irregularly Spaced Observations for Filtering

Turbulent Complex Systems, submitted to SIAM J. Sci. Comput.

◮ Multiscale dynamical systems with intermittency:
Harlim, Numerical Strategies for Filtering Partially Observed Stiff

Stochastic Differential Equations”, J. Comput. Phys., 230(3), 744-762,
2011.
Kang and Harlim, A Fast Filtering Framework for Assimilating Partially

Observed Multiscale Systems: Macro-Micro-Filter, submitted to MWR.
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Online Model Error Estimation Strategy

A classical strategy to cope with model errors for filtering with an
imperfect model nonlinear dynamical system depending on
parameters, λ,

du

dt
= F (u, λ)

is to augment the state variable u, by the parameters λ, and adjoin
an approximate dynamical equation for the parameters

dλ

dt
= g(λ).
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Online Model Error Estimation Strategy

A classical strategy to cope with model errors for filtering with an
imperfect model nonlinear dynamical system depending on
parameters, λ,

du

dt
= F (u, λ)

is to augment the state variable u, by the parameters λ, and adjoin
an approximate dynamical equation for the parameters

dλ

dt
= g(λ).

Then, perform state estimation (or filtering technique) on (u, λ)
using noisy observations v to obtain

P(u, λ|v) ∝ P(u|λ)P(λ)P(v |u, λ)
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Stochastic Parameterized “Extended” Kalman

Filter:

We consider a stochastic model for the evolution of state variable
ψ̂(t) together with combined additive, b(t), and multiplicative,
γ(t), bias correction terms:

d ψ̂(t) =
(

(−γ(t) + iω)ψ̂(t) + b(t) + f̂ (t)
)

dt + σdW (t),
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Stochastic Parameterized “Extended” Kalman

Filter:

We consider a stochastic model for the evolution of state variable
ψ̂(t) together with combined additive, b(t), and multiplicative,
γ(t), bias correction terms:

d ψ̂(t) =
(

(−γ(t) + iω)ψ̂(t) + b(t) + f̂ (t)
)

dt + σdW (t),

db(t) = (−γb + iωb)b(t)dt + σbdWb(t),

dγ(t) = −dγ

(

γ(t)− d
)

dt + σγdWγ(t).

Here, this nonlinear SDE is exactly solvable and statistics are
exactly solvable conditional to Gaussian initial condition. Need to
empirically tune γb, ωb, σb, dγ , σγ but they are quite robust
depending of the physical nature of the mode (see GHM-JCP
2010a, 2010b, BGM 2011, KMS 2011).
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Application of SPEKF on Geophysical Flows

(HM-MWR2010):

The dynamical equations for the perturbed variables about uniform
shear with stream function Ψ1 = −Uy ,Ψ2 = Uy :

∂q1
∂t

+ J(ψ1, q1) + U
∂q1
∂x

+ (β + k2dU)
∂ψ1

∂x
+ ν∇8q1 = 0

∂q2
∂t

+ J(ψ2, q2)− U
∂q2
∂x

+ (β − k2dU)
∂ψ2

∂x
+ ν∇8q2 + κ∇2ψ2 = 0

qj is the quasi-geostrophic potential vorticity given as

qj = ∇2ψj + βy +
k2d
2
(ψ3−j − ψj), j = 1, 2,

with ~u = ∇⊥ψ, kd =
√
8/Ld (see Smith et al. 2002).

Banff Workshop



The 2-layer QG model with baroclinic instability
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“Atmosphere” regime, longer deformation radius F = 1/L2d = 4
(first column) and “Ocean” regime, F = 40 (second column). (see
Kleeman and Majda 2005)
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Stochastic Models for Filtering the barotropic mode:

Recall that

∂qb
∂t

+ J(ψb, qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb + s(ψc , qc ) = 0

where qb = βy +∇2ψb.
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Stochastic Models for Filtering the barotropic mode:

Recall that

∂qb
∂t

+ J(ψb, qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb + s(ψc , qc ) = 0

where qb = βy +∇2ψb.

Fourier Transform:

ψ(x , y , t) =
∑

k,ℓ

ψ̂k,ℓ(t)e
i(kx+ℓy)

Thus, each horizontal mode has the following form

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f̂ (t)dt + NL terms
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Stochastic Models for Filtering the barotropic mode:

Replace the nonlinear terms and all of the baroclinic components
by Ornstein-Uhlenbeck processes (HM Nonlinearity 08, Comm.
Math. Sci. 09) or AR(p)-processes (KH, submitted to Phys D).
That is,

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f̂ (t)dt + σdW (t)

and our task is to parameterize d , ω, σ.
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Stochastic Models for Filtering the barotropic mode:

Replace the nonlinear terms and all of the baroclinic components
by Ornstein-Uhlenbeck processes (HM Nonlinearity 08, Comm.
Math. Sci. 09) or AR(p)-processes (KH, submitted to Phys D).
That is,

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f̂ (t)dt + σdW (t)

and our task is to parameterize d , ω, σ.
Parameterizations:

1. Regressions to empirical statistics from a long time series
(Mean Stochastic Models).

2. On-the-fly parameterization (SPEKF).
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Statistical Quantities: Climatological variances of

the barotropic mode

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el

at
iv

e 
V

ar
ia

nc
e 

in
 %

mode

 

 
atm (F=4)
ocn (F=40)
atm (F=4) with stronger bottom drag

“Atmospheric” case (k2d is small) and “oceanic” case (k2d is large).
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Statistical Quantities: Histogram “marginal pdf’s”
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Statistical Quantities: Correlation functions
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Reduced Filters:

Apply the Bayesian framework to these stochastic models (MSM,
SPEKF model) to obtain “best” posterior estimate:

P(u, λ|v) ∝ P(λ)P(u|λ)P(v |u, λ)
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Reduced Filters:

Apply the Bayesian framework to these stochastic models (MSM,
SPEKF model) to obtain “best” posterior estimate:

P(u, λ|v) ∝ P(λ)P(u|λ)P(v |u, λ)

Remarks:

◮ If these densities are Gaussian, the analytical solution is
known as Kalman filter formula and one can use the posterior
mean and covariance as the best estimate and its uncertainty.

◮ The update in SPEKF uses Kalman filter formula but the
prior statistics are solutions of a set of nonlinear equations
conditional to Gaussian initial conditions.

◮ For special observation network (“plentiful” and regularly
spaced sparse network) with i.i.d noise, we have a reduced
filter on each Fourier component independently.
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Longer deformation radius case (“atmospheric”

regime).
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Shorter deformation radius case (“oceanic” regime).
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Effect of Interpolated data:

1. All results before are for sparse observations that are located
at model grid points. How about irregularly spaced observed
data?
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ũm = g(~um) + ǫ̃m, ǫ̃m ∼ N (0,R),
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Effect of Interpolated data:

1. All results before are for sparse observations that are located
at model grid points. How about irregularly spaced observed
data?

2. The typical observation model is

ũm = g(~um) + ǫ̃m, ǫ̃m ∼ N (0,R),

where g is an interpolates model state ~u to irregularly located
observations ũ. How about interpolate the irregularly spaced
observations to the model grid point?

h(ũm) = ~um + ǫm, E (|ǫm|p) = E (|h(ǫ̃m)|p)

What’s the justification of doing this?

3. How does the uncertainty due to the interpolation errors
affects the data assimilation? Which interpolation technique
should we use?
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Effect of interpolation on energy spectrum:

Interpolated spectrum of a “toy” model for barotropic Rossby
waves with intermittent instability (see Ch 5, 8 of MH book or
GHM JCP 10b).
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The trig interp was considered in (Majda and Grote PNAS 07).
Banff Workshop



Effect of interpolation on covariance

◮ if one interpolate observations with i.i.d. noise, then the
interpolated noise covariance, E (|ǫm|2) = E (|h(ǫ̃m)|2), is not
diagonal.
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interpolated noise covariance, E (|ǫm|2) = E (|h(ǫ̃m)|2), is not
diagonal.

◮ The interpolation operator h we consider here is linear, so
the interpolated noises are Gaussian. This may not be true in
general.
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Effect of interpolation on covariance

◮ if one interpolate observations with i.i.d. noise, then the
interpolated noise covariance, E (|ǫm|2) = E (|h(ǫ̃m)|2), is not
diagonal.

◮ The interpolation operator h we consider here is linear, so
the interpolated noises are Gaussian. This may not be true in
general.

◮ Proposition: Let {σj = σ(xj)}2Mj=0 be i.i.d. noises with
variance ro at regularly spaced grid points. Let us perturb a
single observation site x̃j by δ, i.e., x̃j = xj + δ. Then the ratio
between the largest off-diagonal term and the smallest
diagonal term of the piecewise linearly interpolated covariance
matrix is,

Λ ≡
maxk 6=k′ |Ro

k,k′ |
mink |Ro

k,k |
≤ 2(δ2 + 2δh)

(2M + 1)(δ + h)2 − 2(δ2 + 2δh)
.
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Effect of interpolation on covariance
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Effect of interpolation on filtered solutions

Table: Weakly irregularly spaced observations: Average RMS errors and
spatial correlation for numerical experiments with sparse 2M + 1 = 21
observations and observation noise error

√
ro =

√

(2M + 1)r̂o = 0.4583.

Schemes RMS error Spatial corr

1. FDKF with piecewise linear interp 0.3835 0.91
2. FDKF with nearest nbd 0.4417 0.89
3. FDKF with cubic spline 0.4184 0.88

4. Physical space KF with linear interp 0.5136 0.87
5. Coupled FDKF with linear interp 0.4843 0.88
6. Decoupled FDKF with linear interp 0.5089 0.87
7. Coupled FDKF with trig interp 0.4618 0.89
8. Decoupled FDKF with trig interp 0.5010 0.85
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Effect of interpolation on filtered solutions: weakly

irregularly spaced observations
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Effect of interpolation on filtered solutions: weakly

irregularly spaced observations
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Table: Extremely irregularly spaced and sparse observations: Average
RMS errors and spatial correlation for numerical experiments with sparse
2M + 1 = 21 observations and observation noise error√
ro =

√

(2M + 1)r̂o = 0.4583.

Schemes RMS error Spatial corr

1. FDKF with piecewise linear interp 0.6774 0.83
2. FDKF with nearest nbd 1.4507 0.61
3. FDKF with cubic spline 1.0161 0.47

4. Physical space KF with linear interp 1.5488 0.57
5. Coupled FDKF with linear interp 0.9160 0.78
6. Decoupled FDKF with linear interp 3507.9 0
7. Coupled FDKF with trig interp 0.9198 0.77
8. Decoupled FDKF with trig interp 1.7558 0
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Effect of interpolation on filtered solutions:

extremely irregularly spaced observations

0 1 2 3 4 5 6
−2

−1

0

1

2

3
(4) KF with linear interp

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3
(2) FDKF with nearest nbd interp

0 1 2 3 4 5 6
−2

−1

0

1

2

3
(1) FDKF with piecewise linear interp

0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

5
(3) FDKF with cubic spline

Banff Workshop



Effect of interpolation on filtered solutions:

extremely irregularly spaced observations
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Summary:

1. We introduce systematic stochastic parameterization filtering
strategy with non-Gaussian statistics that corrects model
errors on-the-fly.

2. We study the effects of interpolated observations on data
assimilation: recommend lower order interpolation technique
relative to higher order one.
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Discussions:

1. Reduced Stochastic Filters (MSM, SPEKF). Future
consideration: Applying this technique on Three-Cloud Models
(Khouider and Majda 2007). How to extend SPEKF to vector
valued field? Use the theoretical based MJO model to filter
the simulated MJO solutions from the appropriate GCMs.
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valued field? Use the theoretical based MJO model to filter
the simulated MJO solutions from the appropriate GCMs.

2. Effects of Interpolated Observations on Data Assimilations.
Different or more sophisticated statistical interpolators?
Extension to two-dimensional field? If we have smaller scale
observations, how do we assimilate this data on-the-fly?

3. Filtering multiscale systems with small-scale intermittency
(Macro-Micro-Filtering framework): Future consideration:
Apply superparameterization on MMF.
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