Quantitative analysis of actin assembly and motility during endocytosis in living yeast cells

Brian Galletta and John Cooper Washington University in St. Louis

Mathematical Biology of the Cell: Cytoskeleton and Motility BIRS, Banff August 2011

Outline

Introduction

- Actin Assembly and Motility
- Arp2/3 and Dendritic Nucleation
- Capping Protein: Yeast Actin Patches
- Multiple Arp2/3 Regulators: Roles and Mechanisms
 - Cortactin in Osteoclasts
 - Yeast Actin Patches

Dendritic Nucleation Model

Pollard & Borisy. 2003. Cell. 112:453.

Actin Assembly and Endocytosis

Dorothy Schafer

Actin Assembly and Endocytosis in Yeast

Cortical Actin Patches Mediate Endocytosis

Network of branched actin filaments

Mother

Young et al. 2004. J Cell Biol. 166:629.

Waddle et al. 1996. *J Cell Biol*. 132:861.

Actin Assembly and Endocytosis in Yeast

Contributions from labs of David Drubin, Sandy Lemmon, Liza Pon, Barbara Winsor and Rong Li.

Molecular Composition over Time

Patch protein-GFP

- Digital Fluorescence movies of cells expressing GFPlabeled dendritic nucleation proteins
 - Expression from endogenous locus
 - Function of the GFP fusion
 - Rescue null mutation
 - Proper assay
 - Function in combinations of mutations
- Convert to numbers of molecules
 - Background subtraction
 - Standards in cells
 - Kinetochore Cse4-GFP in yeast expressed from chromosomal locus (32, now 109)
 - Bacterial flagellar protein MotB (22)
- Hundreds of patches in wildtype and mutant cells

Data treatment

- Intensity data for every patch: Number of molecules vs time
- Align curves from different patches at the time of peak molecule number
- Histogram of values from all patches at each time point
- Calculate mode at each time point
 - mean of the bootstrapped half-range modes (Hedges and Shah, 2003)
- Plot Mode vs Time

Molecular Composition of Patches over Time

Includes timing information from Sun et al. 2006. Dev Cell. 11:33.

Capping Protein Mutant: F-Actin Marker

 Consistent with Capping Protein Limiting Actin Assembly

Loss of CP -> Loss of Arp2/3 Network

Lamellipodia in B16 Cells

Mejillano et al. 2004. Cell. <u>118:363</u>.

Analysis of Patch Motion

- Computer tracking program
 - Detects each patch in every frame
 - Links them together over time to create tracks
 - Analysis of hundreds of tracks in multiple isolates

Carlsson et al. 2002. *Biophys J.* 82:2333.

Motion Data Analysis

- Mean Squared Displacement (MSD) vs time
 - Patch Curves Aligned at Start vs End
- Fraction of patches that make transitions of movement
- Time that patches remain in a given phase of movement
- Isolate the character of particles undergoing certain phases of motion

Effect of Loss of CP on Patch Movement

Vesicles Moving from Plasma Membrane to Vacuole

No Effect of Loss of CP

CP is Necessary for Actin Assembly-based Movement

Loisel et al. 1999. Nature. 401:613.

Arp2/3 Creates a New Branched Filament

- Individual Roles for Multiple Regulators?
- Function at Different Places and Times?

Two Nucleators Bind One Arp2/3

Arp2/3 complex is bound and activated by two WASP proteins

Shae B. Padrick^a, Lynda K. Doolittle^a, Chad A. Brautigam^a, David S. King^b, and Michael K. Rosen^{a,1}

"Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; and ^bHoward Hughes Medical Institute Mass Spectrometry Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202

Proc Natl Acad Sci U S A. 2011. Jun 15 Epub ahead of print.

Model for N-WASp and Cortactin

Cortactin Replaces N-WASp as Arp2/3 is Pushed Away from the Membrane

PIP2 **Plasma Membrane** cdc4 N-WASp Arp p40 Arp3 Arp2 p40 Arp3 SH3 Cortactin

Weaver et al. 2002. Curr Biol. 12:1270-1278.

Osteoclast: Bone Resorption

Cortactin-depleted Osteoclasts on Bone

Tehrani et al. 2006. *Mol Biol Cell*. 17:2882. Tehrani et al. 2007. *Proc Natl Acad Sci U S A*. 104:11933.

Cortactin-depleted Cells on Glass

Podosome Dynamics

Control

Cortactin Knockdown

Complexity in Potential Regulators of Arp2/3 in Yeast

Complexity in Potential Regulators of Arp2/3 in Yeast

Complexity in Potential Regulators of Arp2/3 in Yeast

WASp-Interacting Protein (WIP/Vrp1) is Crucial

Galletta et al. 2008. PLoS Biol. 6:e1.

Potential Mechanisms for Arp2/3 Regulator Function

1) Recruitment of Arp2/3 to the site of actin assembly *Measure Levels of Arp2/3*

2) Activation of Arp2/3 to nucleate new filaments

Measure Levels of Capping Protein (Barbed Ends) and Abp1 (F-actin)

3) Network stability and architecture

Measure Rates of Patch Assembly & Disassembly Measure Ratios of the Network Components

How Does Loss of Arp2/3 Binding by WASp/Las17 Affect Actin Patch Assembly and Movement?

Arp2/3 levels in WASp/Las17∆acidic patches

- Peak amount of Arp2/3 recruited is unchanged
 - . Motility defect is not due to a failure to recruit Arp2/3
- Slower assembly and disassembly phases

Capping Protein (Barbed End) Levels in WASp/Las17∆acidic Patches

• The amount of CP recruited is increased ... ?

- . Motility defect not due to insufficient barbed ends
- Assembly: No ∆ Rate, ↑ Duration
- Disassembly: ↑ Rate, ↑ Duration

Abp1 (F-actin) in WASp/Las17 ∆acidic patches

- The amount of Abp1 recruited is slightly increased
 - ... Motility defect not due to insufficient F-actin
- Assembly: Rate unchanged, Duration increased
- Disassembly: Rate increased, Duration unchanged

Summary for WASp/Las17 Mutant

- Cause of Moderate Motility Defects?
 - No \checkmark recruitment Arp2/3
 - Modest ψ rate of Arp2/3 recruitment
 - No \checkmark nucleation actin filaments
 - ▶ ↑ barbed ends and F-actin ... Why?
- Defect in Architecture of Filament Network?

Combining Mutations in WASp/Las17∆ with Ones in Myosin-I (Myo3 & Myo5)

Arp2/3 levels in WASp/Las17 Myosin-I/Myo5 Double Mutant

- Peak level is decreased ... but only by ~ 1/3
- Many patches have normal levels ... but do not move
- Rate & Duration of Assembly & Disassembly Altered

Capping Protein Levels in WASp/Las17 Myosin-I/(Myo3&5) Triple Mutant

- Peak level is decreased ... but only by ~ 1/3
- Very many patches have normal levels ... but do not move
- Rate & Duration of Assembly & Disassembly Altered

Abp1 Levels in WASp/Las17 Myosin-I/(Myo3&5) Triple Mutant

- Peak actin levels: Normal
- Rate & Duration of Assembly & Disassembly Altered

Summary for WASp/Las17 Myosin-I Mutants

- Cause of Strong Motility Defect?
 - ψ Peak Levels of Arp2/3 and CP ... but only 1/3?
 - No Δ Peak F-actin Levels
 - ψ Rates Assembly & Disassembly
- Defect in Architecture of Filament Network?
 - Are the Branches Fewer and Longer?

Summary for Other Mutations

Conclusions for Arp2/3 Regulator Mutants

- Motility defects appear not to be explained by...
 - Insufficient recruitment of Arp2/3
 - Insufficient activation of Arp2/3
- Are there defects in the architecture of the actin filament network?
 - Changes in rates of patch assembly and disassembly

Acknowledgments

Brian Galletta NHLBI, NIH

Anders Carlsson Physics, Wash U

UndergraduatesDennis Chuang, Wash U

- •Kevin Schmidt, Wash U
- Parker Seidel, Princeton

Funding NIH / NIGMS

Shandiz Tehrani Univ Oregon

Meng-Chi Lin RIKEN Center, Kobe

Michael Young Concordia Univ

Kyoungtae Kim Missouri State Univ

Dorothy Schafer Univ Virginia

Alissa Weaver Vanderbilt