A mechanism for the force-velocity relation of fish keratocytes

Experiments: Claudia Brunner,

Josef Käs, University Leipzig

Theory: Juliane Zimmermann, Mihaela Enculescu, MDC

Measuring the force velocity relation of fish keratocytes with an AFM cantilever

laboratory Josef Käs, University Leipzig

Measuring the force velocity relation of fish keratocytes with an AFM cantilever

interference reflection microscopy to monitor leading edge position

Two different methods provide qualitatively the same results but with some quantitative differences

Prass, Jacobson, Mogilner, Radmacher (2006) *J. Cell Biol.* 174(6):767-772

Heinemann, Doschke, Radmacher (2011), *Biophys J* 100(6):1420-1427.

What is there to be understood?

- Why do we not observe the signature of force generation by actin polymerization in the force-velocity relation?
- What explains the velocity values?
- What does it tell about lamellipodial mechanics?

M. Prass, K. Jacobson, A. Mogilner, M. Radmacher, J. Cell Biol. 174, 767 (2006)

Model concept

What determines the value of the cross-linking velocity v_g during steady motion?

Relative to filament:

cross-linking velocity v_g = polymerization velocity

In terms of velocities in the lab frame: polymerization velocity = cell velocity + | retrograde flow |

cross-linking velocity $v_g = \text{cell velocity} + | \text{retrograde flow} |$

 \rightarrow the cross-linking velocity can be measured

J. Zimmermann, M. Enculescu, M. Falcke, *Phys. Rev. E* 82, 051925 (2010).

Model concept

- Filaments polymerize with a forcedependent rate and push the leading edge membrane.
- Filaments can attach to the membrane via linker molecules and either push or pull (turns out they push almost all the time during the force-velocity measurements).
- Attached filaments do not polymerize.
- The filament number is constant during the experiment.
- The gel boundary moves due to crosslinking and retrograde flow.
- Retrograde flow is determined by the force acting on the membrane, gel contraction, adhesion and gel viscosity.
- Adhesion is described as friction.

number of attached filaments

$$\partial_t n_a = k_a n_d - k_d (l_a, z) n_a,$$

attachment - detachment

Retrograde flow at the gel boundary

retrograde = $-\frac{\mu L}{4\eta}g_1 - \frac{f_0}{L\xi}g_2$ flow

- contraction μ increases retrograde flow
- force f₀ exerted on leading edge membrane increases retrograde flow

- L depth of the lamellipodium
- η gel viscosity
- $\xi \ \ \ \ friction \ \ coefficient \ \ \ describing \\ adhesion$
- μ stress due to contraction by myosin
- v_g cross-linking velocity
- *u* gel boundary velocity
- f_0 force exerted on leading edge membrane
- *h*₀ height of lamellipodium at the leading edge
- g_1, g_2 constants depending on ξ, L, η, h_0, v_g
- Semi-analytic solution of the gel equations by Kruse et al., Phys. Biol. 3 (2006) 130–137

J. Zimmermann, M. Enculescu, M. Falcke, *Phys. Rev. E* **82**, 051925 (2010).

Gel boundary velocity $u = cross-linking velocity v_g + retrograde flow$

$$u \approx v_g - \frac{\mu L}{4\eta} g_1 - \frac{f_0}{L\xi} g_2$$

J. Zimmermann, M. Enculescu, M. Falcke, *Phys. Rev. E* **82**, 051925 (2010).

Force-velocity relation of fish keratocytes

The free cell velocity and retrograde flow are reproduced also quantitatively.

The mechanism from first contact till stall

 leading edge slows down immediately due to initial elastic response of the semi-flexible region

 gel boundary decelerates slower than leading edge

- retrograde flow speeds up
- stalling when retrograde flow equals polymerization velocity
- adaptation to stalled state

Force-velocity relation of fish keratocytes: initial filament bending and elastic response

Filaments take the first blow by bending, then the width of the semiflexible region decreases, filaments become stiffer (like length⁻⁴) and straight.

- Such an elastic response was also measured by Heinemann et al. Biophys. J. 2011
- The filament length corresponds to structural data by Urban et al. Nat Cell Biol 2010 and Schaub et al. J Cell Biol 2007 (especially when we take the effect of cofilin on the persistence length into account, (McCullough et al. J.Mol.Biol. 2008)).
- The differential stiffness of the SR of the freely running cell agrees very well with the values for cross-linked F-actin networks measured in the Weitz lab (Gardel et al. Science 2004).

The adaptation phase starts after stalling

Details of the adaptation phase vary strongly between individual cells.

The existence of the adaptation phase demonstrates that the force-velocity relation is not stationary, does not reflect force-clamp measurements.

The fit of simulations to individual experiments relates experimental records to parameter values

Surfaces from bottom to top:

friction coefficient $\xi = 0.1, 0.23, 0.4 \text{ nNs } \mu\text{m}^{-3}$ gel viscosity $\eta = 0.5, 0.83, 1.3 \text{ nNs } \mu\text{m}^{-2}$

Both CD and ML-7 reduce cell velocity and retrograd flow of the unhindered cell

	Control	CD	ML-7
	Measured	Measured	Measured
	Simulated	Simulated	Simulated
Velocity of unhindered	240 ± 47	98 ± 53	127 ± 43
cell (nm/s)	233 ± 47	93 ± 47	128 ± 45
Retrograde			
flow velocity	68 ± 30	27 ± 11	42 ± 12
of unhindered	72 ± 35	35 ± 27	28 ± 8.8
cell (nm/s)			

Only parameters in line with the action of the drug on the actin network exhibit significantly different values between control and drug application

Parameter	Control	CD	ML-7	Units
Filament density	302 ± 42	181 ± 32	300 ± 0	μm^{-1}
Maximum value of the polymerization rate	611 ± 205	588 ± 80	613 ± 106	nm/s
Maximum value of gel cross-linking rate	306 ± 75	129 ± 73	157 ± 52	nm/s
Viscosity of the actin gel	0.91 ± 0.38	0.90 ± 0.37	1.03 ± 0.17	nNs/µm ²
Friction coefficient of actin gel with adhesion sites	0.23 ± 0.12	0.22 ± 0.11	0.243 ± 0.053	$nNs/\mu m^3$
Active contractile stress in actin gel	8.33	8.33	0	$pN/\mu m^2$

significant change

CD - capping protein \rightarrow reduces filament density \rightarrow reduces cross linking rate

ML7 - inhibits myosin, myosin acts mainly as cross linker in the central fish keratocyte lamellipodium \rightarrow reduces cross linking rate

Initial velocity drop and cantilever stiffness

Cantilever stiffness determines the magnitude of the initial velocity drop

Cantilever stiffness determines the magnitude of the initial velocity drop

The F-actin persistence length Ip: published values (in vitro)

- 1. $I_p = 17 \ \mu m$ Gardel ML, *et al.* (2004) *Science* 304(5675):1301
- 2. $I_p = 15 \,\mu\text{m}$ Le Goff L, et al. (2002) *Phys Rev Lett* 89(25):258101
- 3. $I_p = 9-13.5 \,\mu\text{m}$ Isambert H, et al. (1995) J Biol Chem 270(19):11437

With cofilin

4. $I_p = 2.2-9.8 \ \mu m$ McCullough BR, et al. (2008) *J Mol Biol* 381(3):550 Pfaendtner J, et al. (2010) *PNAS* 107(16):7299

We used $I_p = 15 \mu m$. How sensitive are results to the value of I_p ?

The F-actin persistence length determines the free polymer length

Persistence length of F-actin $I_p = 7.5 \ \mu m$ (instead of 15 μm).

Force extension relation of semi-flexible polymers suggests scaling of the free polymer length like $I_p^{1/2}$, which approximately applies here.

Fast feedback from force to adhesion (catch bonds) appears not to have an essential role in shaping the force-velocity relation

Dependence on load history

- the time scale is minutes, including the transients
- dependence on load history: "increasing filament density with force is a plausible explanation for our observations"
- high velocity state is maintained for minutes

Parekh, Chaudhuri, Theriot, Fletcher (2005) *Nat Cell Biol* 7(12):1219-1223

Dependence on load history

No dependence on load history in repetitions with about 40 s interval.

Heinemann, Doschke, Radmacher (2011), *Biophys J* 100(6):1420-1427.

Simulations neither show a dependence on load history on that time scale.

Conclusion force-velocity relation

- The force velocity relation exhibits an initial leading edge velocity drop, motion against rising force till stalling and adaptation to the stalled state.
- The suggested mechanism explains it quantitatively by a transient elastic response of the lamellipodium region close to the leading edge (semi-flexible region) and slower increase of retrograde flow.
- It explains also the action of CD, ML-7, the effect of changing cantilever stiffness, and repetition experiments.
- The force-velocity relation is not stationary.