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Lamellipodial molecular machinery:
treadmilling of actin-myosin network

Svitkina, Verkhovsky, Borisy,

Mullins, Pollard

How does this actin-myosin array self-organize?
How is the front protruding?
Rear retracting?
What keeps the sides stable?



Dynamic cell geometry:
Lee, Theriot, Jacobson et al 1993

Graded Radial Extension model:

balance of (spatially graded) extension and contraction determines cell shape
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But what are the mechanisms?
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Balance of uniform F-actin growth
and graded myosin-powered F-actin flow
determines the cell shape and movement
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Barnhard et al, PLoS Biology, 9(5): €1001059 (2011)

The centripetal actin flow is
indeed graded, and myosin is
biased to the rear, but why?



Mechanical model of contractile viscous actin gel

Barnhard et al, PLoS Biology,2011
(based on earlier model in BJ 2009)
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..can explain the graded myosin-powered centripetal actin flow...

Barnhard et al, PLoS Biology, 2011
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..but the cell shape and movement are not that easy:

Wolgemuth et al, Biophys J, In Press




Maybe what could help is if both polymerization and inward flow are graded:

Barnhard et al, PLoS Biology, 2011

v = cell boundary protrusion/retraction rate
V = actin polymerization rate

U.= myosin-driven retrograde flow rate
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In fact, in lamellipodial fragments...

Ofer et al 2011, PNAS, In Revision

..myosin is too weak and does not play a role:

Inhibiting myosin does not change shape/speed:
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F-actin distribution at the leading edge is graded

Ofer et al 2011, PNAS, In Revision
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Ofer et al 2011, PNAS, In Revision
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Model: membrane tension stalls actin filaments at the sides.
Higher F-actin density at the center provides protrusion.
At the rear, membrane tension pushes forward disassembling actin network.
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Quantitatively: membrane tension stalls actin filaments at the sides.

Ofer et al 2011, PNAS, In Revision

Front corners are stalled:
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At the rear, actin network resistance to crushing
is balanced by membrane tension. Ofer et al 2011, PNAS, In Revision
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Predicted and observed fragment shapes:

Ofer et al 2011, PNAS, In Revision
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Barnhard et al, PLoS Biology, 2011
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Model: membrane tension stalls actin filaments at the sides + myosin pulls them in.
Higher F-actin density at the center provides protrusion.

At the rear, membrane tension pushes + myosin pulls disassembling actin network.
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Wolgemuth et al, Biophys J, In Press




lab reference frame (retrograde flow) Barnhard et al, PLoS Biology, 2011
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How does the cell change its migration direction?
What asymmetries in internal organization occur?
What are the mechanics and feedbacks underlying these asymmetries?

Allen et al, In Progress

Spontaneous turning:

Hypothesis: higher myosin concentration
at one side creates inward flow
immobilizing that side, so the cell
pivots around it.

Wolgemuth et al, Unpublished



However, myosin is actually higher at the faster edge:
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Allen et al, In Progress
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Key asymmetries in internal organization:

\

Allen et al, In Progress

Erin Barnhart

Myosin density and actin flow
are higher at the fast side,
but
traction forces are
higher at the slower side

Actin meshwork flow in lab frame of reference




Can the model explain these asymmetries?
Turns out, all we need is stick-slip adhesions
and an initial fluctuation:

Allen et al, In Progress
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The model predicts that given asymmetric myosin distribution,
the actin flow and traction forces are as observed:

Given myosin distribution:

Predicted traction forces:

Observed traction for'c_es:

Allen et al, In Progress

Predicted adhesion strength:

Predicted actin flow:
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Why is myosin distributed as observed?
Because it is swept to the faster side by the actin flow:
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Mechanical feedback of turning:
more myosin at one side accelerates the flow and decreases adhesions.
Respective rear side advances faster re-orienting leading edge
machinery, so respective front side advances faster.
Resulting flow in the cell framework sweeps myosin to the faster side.
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Allen et al, In Progress



Future: other redundant motility modules, complex cells, ...
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Mogilner and Keren, Curr Biol 2009
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