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Structure of the Microtubule
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Taxol and Mitosis
Taxol hyperstabilizes microtubules, prevents 
their disassembly, and makes the ends blunt.
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Zn sheets do not have M-loop H1-S2 loop interactions, 
but Taxol is still required to stabilize them.

Löwe and Amos, 1998
Löwe et al, 2001

M loop
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GMPCPP GTP-Taxol
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System for MD Simulations 

• Used 8Å microtubule 
model from Ken Downing 
as template

• Created a system with 
more than 250,000 
atoms (protein, ions and 
water)

• Performed apo and 
taxol-bound simulations 
on 1024 processors on 
SDSC BlueGene
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apo Taxol bound
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Allosteric Effects in β-Tubulin

•  The T1 - T5 loops as well 
as a portion of H11 all show 
enhanced flexibility when 
Taxol binds

•  The increase in flexibility 
should allow the protein to 
absorb the induced strain 
resulting from hydrolysis or 
phosphate loss
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Allosteric Effects in β-Tubulin

•  These same loops also 
form the interface with 
the next dimer in the 
protofilament

• Since this interface is 
more flexible, the 
protofilament and hence 
the entire polymer should 
appear more flexible.
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Atomistic Simulations ➙ Mechanics

• We see an increase in flexibility, but we want  
to relate this to mechanical properties of the 
protofilaments and the whole microtubule

• Using continuum mechanics descriptions, we can 
relate dynamics in the simulated structure to 
quantities such as the Young’s modulus, 
persistence length, etc.
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Coarse Graining the System

We start with our 
all-atom 

simulations ...

and treat the center 
of each monomer 

as a particle.
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Mechanical Modes
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Bending Rigidity

We are not applying an external force to the 
system (typically calculate a force-displacement 
curve), but instead we are looking at equilibrium 
fluctuations

�Ebend� =
kT
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Bending Rigidity

We know these

To determine the
bending rigidity

We measure this

θ
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Bending Rigidity
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Compression Modulus
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Apo Material Numbers

Bending Rigidity

2D Young’s Modulus

h�d2i = 0.000369nm2

E(2D) = 8.73 ⇥ 104 pN/nm

⇥��2⇤ = 0.000129
⇥ = 1.24 � 104 pN · nm
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Continuum MT Mechanics

• We want to treat the 
microtubule as an 
isotropic elastic shell, 
which implies:

h

� =
1

12(1� ⇥2)
Eh3

E(2d) = Eh

E
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Material Properties
• Using these formulae we find

Simulation

E = 2.2 GPa

h = 4.0 nm

lp = 6.9 mm

E = 0.3 - 3 GPa

h = 4.0 nm

lp = 1 - 10 mm

Experiment

Hawkins et al. J Biomech., 2010
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Apo vs. Taxol Contour
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Taxol stabilized MTs are more compressible
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Effect of Taxol

E = 0.38 GPa

h = 5.4 nm

lp = 1.2 mm

TaxolApo

E = 2.2 GPa

h = 4.0 nm

lp = 6.9 mm

Taxol decreases the Young’s modulus and the 
persistence length by a factor of about 5-6.
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9 out of 10 biophysicists agree
 Taxol stabilized MTs are more flexible

✔

✘
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Shear Modulus

No difference in 
shear modulus
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Anisotropy

• If we calculate G assuming isotropic elasticity

we get a shear modulus of 840 MPa
• We find a shear modulus of 47 MPa - some 

anisotropy, but not extreme

E = 2G(1 + �)
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Increasing Length and Time

• We want to address questions that
go beyond our simple model and
make more ties to experiment

• In order to increase the size of
our system and access longer
time scales, we need make some
further simplifications to our
description and treatment
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• Our molecular dynamics simulations 
solve a Langevin equation

• If move the the overdamped regime, 
the acceleration term averages to zero 
and we can use Brownian dynamics

• Our time step increases from 2 fs to 
5-10 ps and we use “simple” springs

BD Simulations

Persistence Length

Ẋ = � D

kBT
�U(X) +

�
2DS(t)
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Anisotropic Mechanics
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Fourier Analysis

MT Length (nm)
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• We decompose 
the contour 
traces of the 
MT into 
Fourier modes 
and look at the 
variance of the 
modes
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Using the Bootstrap
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We can determine the 
correlation time for mode 1

Knowing the number of 
independent points, we 
apply the bootstrap
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Variance vs. Mode Number
• One key difference in 

our system is that we 
have no noise

• With the variances for 
each mode, we can 
perform a least-
squares fit and get the 
persistence length with 
its standard error
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MT Persistence Length
• We are still in the 

process of assessing 
the influence of each 
term (E, G, etc.) on 
the observed 
mechanics, but we do 
see a length 
dependent persistence 
length emerge
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Comparison with Experiment

• We are still at relatively short lengths (2 µm), 
but are moving up to more realistic lengths of 
20 µm
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Structure vs. Mechanics
• We made our system intrinsically anisotropic 

through our choice of constants
• Interestingly, even 

if we make the 
mechanics isotropic, 
the anisotropic MT 
structure gives 
similar (better?) 
results 100 1000

MT length (nm)
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Structure vs. Mechanics
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Tubulin Isoform Abundances

Source β I β II β III β IV

Bovine 
Brain 3% 58% 25% 13%

Breast 
Cancer 39.1% 0% 2.5% 58.4%

Ovarian 
Cancer 97% 0% 0% 3%

Lung 
Cancer 63.2% 1.5% 5% 30.3%
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H1-S2 Loop Substitutions

β1 GTYHGDSDLQLDR
β2 GSYHGDSDLQLER
β3 GNYVGDSDLQLER
β4 GTYHGDSDLQLER
   *.* *******:*

• The various isoforms are largely conserved, but 
there are substitutions in a few keys regions, 
including the primary contact points between 
protofilaments
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Importance of the C-Termini
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Coarse-Grained MD
• In order to capture atomic level effects, we use 

the MARTINI coarse graining procedure which 
reduces the number of atoms
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System Set-Up
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• We want to make the
system large enough
to observe the
dynamics and
interactions of the
tails, and see the
interactions of the
various isoforms
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Periodicity = Infinity
• Because our system is periodic in the z-

direction, it appears as an infinite polymer
• After adding water and ions, we are ready 

for simulation
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Coarse-Grained MD
• Using the MARTINI 

description, we can still 
access time scales in 
the µs range

• We can get a much 
better idea of radial 
compression and shear 
since we are using a 
quasi-atomic description
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Dynamics to Mechanics

• Since our system is 
periodic along the MT 
length and that 
length is relatively 
short, we will need to 
ascertain quantities 
like Ex from looking 
at structural 
fluctuations
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Summary
Taxol Increase Microtubule Flexibility
Counteracts the conformational change due to 
hydrolysis or phosphate loss 

Anisotropic Effects Come From Mechanics and 
Structure 
Each contribution still needs to be assessed

CG Models can be Parameterized from MD 
Simulations
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