

Biomimicking systems of cell shape changes

Cécile Sykes, Laboratoire Physicochimie Curie, UMR 168 Institut Curie/CNRS/Université Paris 6, FRANCE

+VASP that detaches the NPF from actin

Ф=4µm

[L. Trichet, BJ 2007]

Gel growth-symmetry breaking-movement ^aGel grown around a bead

low gelsolin concentration [J. Plastino, Curr Op in Cell Biol 2005] [J. van der Gucht PNAS 2005, E. Paluch, *JCB* 2006] Formation of actin shells around beads for stress buildup

Artificial corteces in liposomes (inside-out geometry of actin shells)

Mechanical characterisation of artificial corteces (tube pulling)

Formation of actin shells around beads for stress buildup

Artificial corteces in liposomes (inside-out geometry of actin shells)

Mechanical characterisation of artificial corteces (tube pulling)

Actin gel growth through branching and capping

Actin gel growth and stress build up in the presence of Arp2/3 and CP

Symmetry breaking does not happen in all Arp2/3 and CP concentration conditions

Actin heterogeneities

No symmetry breaking

Predictive morphology diagram

Formation of actin shells around beads for stress buildup

Artificial corteces in liposomes (inside-out geometry of actin shells)

> Mechanical characterisation of artificial corteces (tube pulling)

Mimicking the actomyosin cortex in cells

[Morone et al., 2006]

- Filaments next to the membrane
- No specific orientation
- Meshsize ~100nm
- 50nm < thickness < 2µm

[Charras et al., JCB 2006]

 Nucleation: unclear
Tethering: ERM proteins (Ezrin, Radixin, Moesin)
Myosin II

Actin polymerisation at the liposome inner membrane

<u>α-hemolysin</u> ~1nm diameter Cut-off = 3kDa

[Noireaux et al. 2004]

[L.-L. Pontani et al., BJ, 2009]

Polymerisation after pore incorporation or upon T° increase

Inverted emulsion technique

[Pautot et al. 2003]

[L.-L. Pontani, BJ 2009]

Triggering the polymerisation

 $C = \frac{M - m}{M + m}$

Shell fluorescence if C>0.01

[L.-L. Pontani, BJ 2009] Without pores, Karine Guevorkian

Artificial corteces

- produce dynamic actin polymerisation vanish in LatA treatment
- are specific of the Arp2/3 machinery

[L.-L. Pontani et al., BJ, 2009]

- are able to reproduce the endocytosis of the Shiga toxin

[W. Römer, L.-L. Pontani et al., Cell, 2010]

Formation of actin shells around beads for stress buildup

Artificial corteces in liposomes (inside-out geometry of actin shells)

Mechanical characterisation of artificial corteces (tube pulling)

Tube pulling experiments

for membranes prepared by electroformation

for membranes prepared by electroformation, at constant membrane tension

[A. Roux, EMBO 2005]

For membranes prepared by the inverse emulsion technique???

C. Campillo

For membranes prepared by the inverted emulsion technique, force depends on tube length

C. Campillo

Thickness: 4.56 ± 0.22 nm (n=54), same as a "pure" lipid bilayer

LL. Pontani, C. Campillo

Take home message:

the difference between electroformed liposomes and cells should not be attributed solely to the cytoskeleton, but mainly to membrane proteins

Conclusion

 ✓ Actin shell breakage: stress builds up under specific protein conditions

✓ Actin shells can be produced in liposomes

 ✓ The composition of the bilayer membrane controls dynamic mechanical properties (probed by tube pulling)

Biomimetism of cell movement

Julie Plastino (assistant professor) Florian Rückerl Timo Betz Clément Campillo Kévin Carvalho

Collaborators

Laurent Blanchoin Ludger Johannes Pierre Nassoy Jean-François Joanny Margaret Gardel (Chicago) Patricia Bassereau

Human Frontier Science Program

ANR Agence Nationale de la Recherche

Léa-Laetitia Pontani Mike Murrell