Joint Statistical Modeling of Multiple High Dimensional Data

University of North Carolina at Chapel Hill Wonyul Lee and Yufeng Liu

Current Challenges in Statistical Learning December 12, 2011

1/33

Outline

- 1. Motivation and Problem
- 2. Multivariate response regression with inverse covariance
- 3. Asymptotic properties
- 4. Numerical examples

Glioblastoma multiforme (GBM) Cancer Data

- The primary form of brain tumor
- 305 samples, 21694 gene expressions, 535 micro-RNAs, CN, SNP,...

Figure: Heatmaps of gene expression data and micro-RNA data

Glioblastoma multiforme (GBM) Cancer Data

Goal

- Regression models
 - micro-RNAs(X) \rightarrow Gene expressions(Y)
 - micro-RNAs(\mathbf{Y}) \leftarrow Gene expressions(\mathbf{X})
- Dependence structure in one data set given the other
- Challenge
 - A large number of responses and covariates

Multivariate Response Regression

• Training sample: $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1,...,n}$

▶
$$\mathbf{x}_i \in \mathbf{R}^p$$
, $\mathbf{y}_i = (y_{i1}, ..., y_{im}) \in \mathbf{R}^m$

▶ **y**_i |**x**_i follows a multivariate Gaussian distribution

$$\mathbf{y}_i = \mathbf{B}^T \mathbf{x}_i + \boldsymbol{\epsilon}_i$$
 for $i = 1, ..., n$,

where $\boldsymbol{\epsilon} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$.

• Our goal is to estimate **B** and $\mathbf{C} = \mathbf{\Sigma}^{-1}$

Multivariate Response Regression

• **Y**: $n \times m$ response matrix, **X**: $n \times p$ predictor matrix.

$$n \log \det(\mathbf{C}) - \operatorname{tr}\left\{ (\mathbf{Y} - \mathbf{XB})\mathbf{C}(\mathbf{Y} - \mathbf{XB})^T \right\}$$

・ロン ・四 と ・ ヨ と ・ ヨ

6/33

- Log-likelihood of (B, C) given X
- ▶ n > p, m : maximum likelihood estimator
- n < p, m: Penalized approach

Penalized Maximum Likelihood Estimator

► Lee and Liu (2010)

$$\underset{\mathbf{B},\mathbf{C}}{\operatorname{argmin}}[-n \log \det(\mathbf{C}) + \operatorname{tr} \{ (\mathbf{Y} - \mathbf{X}\mathbf{B})\mathbf{C}(\mathbf{Y} - \mathbf{X}\mathbf{B})^T \}$$

$$+\lambda_1 \sum_{j,k} w_{jk} |\beta_{jk}| + \lambda_2 \sum_{s \neq t} v_{st} |c_{st}|]$$

▶ Rothman, Levina and Zhu (2010): L₁ penalties, focus on **B**

Is a single Gaussian model reasonable?

- Apply the method to our real data
- Verhaak et al. (2010)
 - Four subtypes of GBM patients
 - based on gene expressions
- A mixture of several Gaussian distributions

8/33

Glioblastoma multiforme (GBM) Cancer Data

Genes with subtypes

► Four subtypes: Classical, Mesenchymal, Neural, and Proneural

micro-RNAs with subtypes

 Image: Classical Samples
 Mesenchymal Neural Proneural
 Proneural
 Classical Samples
 Mesenchymal Neural Proneural
 Samples
 Samples
 Samples

Figure: Heatmaps of gene expression data and micro-RNA data

Mixture of Gaussian Models

► G different groups.

$$\mathbf{y}_i^{(g)} = {\mathbf{B}^{(g)}}^T \mathbf{x}_i^{(g)} + \epsilon_i^{(g)}$$
 for $i = 1, ..., n_g; g = 1, ..., G$.

- $\mathbf{B}^{(g)}$ is an unknown $p \times m$ parameter matrix.
- ► $\epsilon_i^{(g)} \sim \mathbf{N}(0, \mathbf{\Sigma}^{(g)})$
- ► $C^{(g)} = (\Sigma^{(g)})^{-1}$
- ► Group label g is given.

Mixture of Gaussian Models

- Can model each group separately.
- The groups have shared information with similar structure.
- Model G groups jointly.
- ▶ Identify the common and unique structure on {**B**^(g), **C**^(g)}

Group penalty

•
$$\beta_{jk} = (\beta_{jk}^{(1)}, ..., \beta_{jk}^{(G)})^T$$

• $p(\beta_{jk}) = p(\beta_{jk}^{(1)}, ..., \beta_{jk}^{(G)})$

► Yuan and Lin (2006): Group Lasso

$$p(\beta_{jk}) = ||\beta_{jk}||_2 = \sqrt{\beta_{jk}^{(1)^2} + ... + \beta_{jk}^{(G)^2}}$$

Turlach et al.(2005), Zhang et al.(2008), Zhao et al.(2009)

$$p(\beta_{jk}) = ||\beta_{jk}||_{\infty} = \max(|\beta_{jk}^{(1)}|, ..., |\beta_{jk}^{(G)}|)$$

Select variables in an "all-in-all-out" fashion

Group penalty

- No flexibility of selecting variables within a group.
- For a gene expression (\mathbf{y}) and a micro-RNA (\mathbf{x}) ,

- Classical, Mesenchymal: $\mathbf{x} \Rightarrow \mathbf{y}$
- Neural, Proneural: x ⇒ y
- Need flexibility

Hierarchical Group Penalty

•
$$\beta_{jk} = (\beta_{jk}^{(1)}, ..., \beta_{jk}^{(G)})^T$$

Zhou and Zhu (2010)

$$p(\beta_{jk}) = \sqrt{|\beta_{jk}^{(1)}| + ... + |\beta_{jk}^{(G)}|} \approx \sum_{g=1}^{G} \frac{1}{(\sum_{g=1}^{G} |\beta_{jk}^{(g),0}|)^{1/2}} |\beta_{jk}^{(g)}|,$$

where $\beta_{jk}^{(g),0}$ is close to the solution.

- All coefficients in β_{ik} have the same weight.
- Allow sparsity within group.

Penalized MLE with Hierarchical Group Penalty

$$\sum_{g=1}^{G} \left[-n_g \log \det(\mathbf{C}^{(g)}) + \operatorname{tr} \left\{ (\mathbf{Y}^{(g)} - \mathbf{X}^{(g)} \mathbf{B}^{(g)}) \mathbf{C}^{(g)} (\mathbf{Y}^{(g)} - \mathbf{X}^{(g)} \mathbf{B}^{(g)})^T \right\} \right]$$

- Two groups of matrices to be estimated: $\{\mathbf{B}^{(g)}\}\$ and $\{\mathbf{C}^{(g)}\}\$
- Two plug-in methods

1.
$$\{\hat{\mathbf{B}}^{(g)}\} \rightarrow \{\mathbf{C}^{(g)}\}$$

2. $\{\hat{\mathbf{C}}^{(g)}\} \rightarrow \{\mathbf{B}^{(g)}\}$

► One joint method : {**B**^(g), **C**^(g)} together

Two Plug-in Methods

1 Plug-in Hierarchical LASSO (PHL) estimator

$$\underset{(\mathbf{B}^{(g)})_{g=1}^{G}}{\operatorname{argmin}} \sum_{g=1}^{G} \operatorname{tr} \left\{ (\mathbf{Y}^{(g)} - \mathbf{X}^{(g)} \mathbf{B}^{(g)}) \hat{\mathbf{C}}^{(g)} (\mathbf{Y}^{(g)} - \mathbf{X}^{(g)} \mathbf{B}^{(g)})^{T} \right\}$$
$$+ \lambda_{1} \sum_{j,k} \left(\sum_{g=1}^{G} \left| \beta_{jk}^{(g)} \right| \right)^{1/2}.$$

• $\{\hat{\mathbf{B}}^{(g),0}\}$: initial estimates of $\{\mathbf{B}^{(g)}\}$ (LASSO).

$$\mathbf{S}^{(g)} = \frac{1}{n_g} (\mathbf{Y}^{(g)} - \mathbf{X}\hat{\mathbf{B}}^{(g),0}) (\mathbf{Y}^{(g)} - \mathbf{X}\hat{\mathbf{B}}^{(g),0})^T$$

► Estimate $\{\mathbf{C}^{(g)}\}$ using GLASSO with $\{\mathbf{S}^{(g)}\}$

Two Plug-in Methods

2 Plug-in Hierarchical Graphical LASSO (PHGL) estimator

$$\underset{(\mathbf{C}^{(g)})_{g=1}^{G}}{\operatorname{argmin}} \sum_{g=1}^{G} \left\{ -n_{g} \log \det(\mathbf{C}^{(g)}) + n_{g} \operatorname{tr}(\mathbf{S}^{(g)}\mathbf{C}^{(g)}) \right\}$$
$$+ \lambda_{2} \sum_{s \neq t} \left(\sum_{g=1}^{G} \left| c_{st}^{(g)} \right| \right)^{1/2}.$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

17/33

- Need Â^(g) to plug in.
- $\{\hat{\mathbf{B}}^{(g)}\}$: LASSO.

Doubly Penalized Sparse (DPS) Estimator

$$\underset{(\mathbf{B}^{(g)}, \mathbf{C}^{(g)})_{g=1}^{G}}{\operatorname{argmin}} \sum_{g=1}^{G} \left\{ -l_{g}(\mathbf{B}^{(g)}, \mathbf{C}^{(g)}) + \lambda_{1} \sum_{jk} \left(\sum_{g=1}^{G} \left| \beta_{jk}^{(g)} \right| \right)^{1/2} + \lambda_{2} \sum_{s \neq t} \left(\sum_{g=1}^{G} \left| c_{st}^{(g)} \right| \right)^{1/2} \right\},$$
where
$$l_{g}(\mathbf{B}^{(g)}, \mathbf{C}^{(g)}) = n_{g} \log \det(\mathbf{C}^{(g)}) - \operatorname{tr} \left\{ (\mathbf{Y}^{(g)} - \mathbf{X}^{(g)} \mathbf{B}^{(g)}) \mathbf{C}^{(g)} (\mathbf{Y}^{(g)} - \mathbf{X}^{(g)} \mathbf{B}^{(g)})^{T} \right\}$$

► The first penalty term : hierarchical sparsity among {**B**^(g)}

► The second penalty term : hierarchical sparsity among {**C**^(g)}

Asymptotic Properties

▶ $n \to \infty$

• $\{\mathbf{B}^{*,(g)}\}$ and $\{\mathbf{C}^{*,(g)}\}$: true parameter matrices

$$\blacktriangleright \beta^* = (\mathsf{Vec}(\mathbf{B}^{*,(1)})^T, ..., \mathsf{Vec}(\mathbf{B}^{*,(G)})^T)^T$$

►
$$\mathbf{c}^* = (\operatorname{Vec}(\mathbf{C}^{*,(1)})^T, ..., \operatorname{Vec}(\mathbf{C}^{*,(G)})^T)^T$$

Assumption

$$\frac{1}{n} \mathbf{X}^{(g)} {}^{\mathsf{T}} \mathbf{X}^{(g)} \to A^{(g)} \text{ as } n \to \infty,$$

where $A^{(g)}$ is a positive definite matrix; g = 1, ..., G.

Asymptotic Properties of the PHL solution

Theorem

If $\lambda_1 n^{-\frac{1}{2}} \to 0$ and $\hat{\mathbf{C}}^{(g)}$ is a consistent estimator of $\mathbf{C}^{*,(g)}$,

1. (Consistency)
$$\|\hat{\beta} - \beta^*\| = O_p(\frac{1}{\sqrt{n}})$$

2. (Sparsity) If $\lambda_1 n^{-\frac{1}{4}} \to \infty$, $\lim_n P(\hat{\beta}_{jk}^{(g)} = 0) = 1$ if $\beta_{jk}^{*,(g)} = 0$.

Asymptotic Properties of the PHGL solution

Theorem

If $\lambda_2 n^{-\frac{1}{2}} \to 0$ and $\hat{\mathbf{B}}^{(g)}$ is a consistent estimator of $\mathbf{B}^{*,(g)}$,

1. (Consistency)
$$\parallel \hat{\mathbf{c}} - \mathbf{c}^* \parallel = O_p(\frac{1}{\sqrt{n}})$$

2. (Sparsity) If
$$\lambda_2 n^{-rac{1}{4}} o \infty$$
, $\lim_n P(\hat{c}_{jk}^{(g)} = 0) = 1$ if $c_{jk}^{*,(g)} = 0$.

Asymptotic Properties of the DPS solution

I heorem
If
$$\lambda_1 n^{-\frac{1}{2}} \to 0$$
 and $\lambda_2 n^{-\frac{1}{2}} \to 0$,
1. (Consistency)
 $\| (\hat{\beta}^T, \hat{\mathbf{c}}^T)^T - (\beta^{*T}, \mathbf{c}^{*T})^T \| = O_p(\frac{1}{\sqrt{n}}),$
2. (Sparsity) If $\lambda_1 n^{-\frac{1}{4}} \to \infty$, $\lim_n P(\hat{\beta}_{jk}^{(g)} = 0) = 1$ if $\beta_{jk}^{*,(g)} = 0$;
3. (Sparsity) If $\lambda_2 n^{-\frac{1}{4}} \to \infty$, $\lim_n P(\hat{c}_{jk}^{(g)} = 0) = 1$ if $c_{jk}^{*,(g)} = 0$.

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■

- ▶ *G* = 3, *m* = 20, *p* = 20, *n* = 40
- Common structure across groups

Figure: Black: nonzero parameters, White: zero parameters

Add unique nonzero parameters to each group.

 $\rho = \frac{\text{number of unique nonzero parameters}}{\text{number of common nonzero parameters}}$

Prediction Error

$$\mathsf{PE} = rac{1}{\mathsf{nmG}}\sum_{g=1}^{\mathsf{G}} \parallel \mathbf{Y}^{(g)} - \hat{\mathbf{Y}}^{(g)} \parallel_{\mathsf{F}}^2$$

Entropy Loss

$$EL = \frac{1}{G} \sum_{g=1}^{G} \left[tr((\mathbf{C}^{(g)})^{-1} \hat{\mathbf{C}}^{(g)}) - \log(|(\mathbf{C}^{(g)})^{-1} \hat{\mathbf{C}}^{(g)}|) - m \right]$$

Frobenius Loss

$$FL = \frac{1}{G} \sum_{g=1}^{G} \parallel \mathbf{C}^{(g)} - \hat{\mathbf{C}}^{(g)} \parallel_{F}^{2} / \parallel \mathbf{C}^{(g)} \parallel_{F}^{2}$$

24 / 33

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Figure: M4 and M5 are ours

- M1: Model each group separately. (penalized MLE with L₁ penalties)
- M2: Combine all groups. (penalized MLE with L₁ penalies)
- M3: Applying LASSO separately to each response in each group
- ▶ M4: Plug-in method with hierarchical penalty for {B^(g)}
- M5: Joint method with two hierarchical penalties.

Figure: M4 and M5 are ours

- M1: Model each group separately. (penalized MLE with L₁ penalties)
- M2: Combine all groups. (penalized MLE with L₁ penalties)
- M3: Applying GLASSO separately to each group
- M4: Plug-in method with hierarchical penalty for $\{C^{(g)}\}$
- M5: Joint method with two hierarchical penalties.

Figure: M4 and M5 are ours

- M1: Model each group separately. (penalized MLE with L₁ penalties)
- M2: Combine all groups. (penalized MLE with L₁ penalties)
- M3: Applying GLASSO separately to each group
- M4: Plug-in method with hierarchical penalty for $\{C^{(g)}\}$
- M5: Joint method with two hierarchical penalties.

100 microRNAs (X) and 20 gene expressions (Y)

28 / 33

100 microRNAs (X) and 20 gene expressions (Y)

Figure: A graphical model of gene expressions based on $\{\hat{C}^{(g)}\}$

20 microRNAs (\mathbf{Y}) and 100 gene expressions (\mathbf{X})

30 / 33

20 microRNAs (\mathbf{Y}) and 100 gene expressions (\mathbf{X})

Figure: A graphical model of micro-RNAs based on $\{\hat{C}^{(g)}\}$

Future Work

- Asymptotic properties when $p, m \rightarrow \infty$
- Improve computational efficiency
- More comprehensive study on real data (GBM data)

Thank you very much !!

・ロ ・ ・ 一 ・ ・ 注 ・ ・ 注 ・ う へ (* 33 / 33