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Introduction and Preliminaries

Consider a set of observations Y = (y1, y2, · · · , yn)′, where
yi is assumed to have a distribution in the exponential
family of distributions with predictor values
xi = (xi1, xi2, · · · , xin)′.
The probability density/mass function of the form

fY (yi ; θi , φ) = exp{(yiθi − b(θi))/ai(φ) + c(yi , φ)},

where a(·), b(·) and c(·) are known functions and φ is a
scale parameter. If φ is known, then the exponential-family
model with canonical parameter θi can be written as

fY (yi ; θi) = c(yi)exp{yiθi − b(θi)}

When the parameter θi is modelled as a linear function of
the predictors, the link function is known as canonical link.
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Introduction and Preliminaries

Some key features for Generalized Linear Model(GLIM)

The random component of a GLIM specifies the
distribution of the response variable Yi

The mean and variance of the response variable Yi are
given by

E [Yi ] = µi =
db(θi)

dθi
and Var(Yi) = V (µi) =

d2b(θi)

dθ2
i

.

The systematic component of a GLIM is a linear
combination of regressor variables, termed the linear
predictor η,

ηi = x′iβ,

where x′i = (xi1, xi2, · · · , xin) is the regressor vector and β
is the vector of model parameters.
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Introduction and Preliminaries

The link function connects the random and systematic
components. This connection is done by equating the mean
response µi to the linear predictor ηi by ηi = g(µi), that is

g(µi)
link
= ηi = x′iβ.
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The Statistical Estimation Problem

Candidate Subspace

A Great Deal of Redundancy in the Full Model

We want to estimate β when it is plausible that β lie in the
subspace

Hβ = h

Hence the Non-Sample information (NSI) or Uncertain prior
information (UPI)is

NSI : Hβ = h

H is q × k matrix of rank q ≤ k
h is a given q × 1 vector of constants.
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Motivating Examples

Genomics Research

The goal of this paper is to analyze some of the issues involved
in the estimation of the parameters in generalized linear models
that may be over-parameterized that is, too many x’s and thus
β’s are included.
For example, in genomics research it is common practice to
test a candidate subset of genetic markers for association with
disease. Here the candidate subset is found in a certain
population by doing genome wide association studies. The
candidate subset is then tested for disease association in a
new population. In this new population it is possible that genetic
markers not found in the first population are associated with
disease.
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Motivating Example

Coronary Heart Disease (CHD) Data

Consider a data set which is analyzed by Park and Hastie
(2006) [this data set is originally collected by Rossouw (1983)].

The coronary heart disease (CHD) may be related to the
variables:

Systolic blood pressure

cumulative tobacco

Low density

Lipoprotein cholesterol
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Coronary Heart Disease (CHD) Data

Variables Inclusion and Deletion (VID)

Adiposity

Family history of heart disease

Type-A behavior

Obesity

Alcohol

Age

and many other variables
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Coronary Heart Disease (CHD) Data

Variables Inclusion and Deletion (VID)

The maximum likelihood analysis shows that following variables
are the most important factors

Cumulative tobacco

Low density lipoprotein cholesterol

Family history of heart disease

Type-A behavior

Age
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Variables Inclusion and Deletion (VID)

Nuisance Variables

The effect of some variables may be ignored

We may treat these insignificant variables as Nuisance
Variables
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VARIABLE SELECTION: OVER MODELLING

Two key aspects of variable selection methods are:
Evaluating each potential subset of predictor variables
Deciding on the collection of potential subsets

Evaluating Potential Subset of Predictor Variables

R2- Adjusted
Akaike’s Information Criterion (AIC)
Corrected AIC
Bayesian Information Criterion (BIC)
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Likelihood Function

Consider binary responses: Y = (y1, y2, · · · , yn)′ and
predictors X = (x1,x2, · · · ,xn)′

The log-likelihood is given by

l(β) =
n∑

i=1

[(yiθi − b(θi)) + logc(yi)]

The score equations are given by

(Y− µ)′D(µ)X = 0,

where D(µ) = diag(dii) and dii = 1/V (µi)g′(µi).
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Proposed Estimation Strategies

The Candidate Estimator

The score equations cannot be solved explicitly and hence
recourse must be made numerical methods to get
unrestricted maximum likelihood estimate (UE), β̂.
There are at least three methods available to solve these
equations:
The Newton-Raphson method
Fisher’s Scoring method
Iteratively Reweighted Least Squares method

Fahrmeir and Kaufmann (1985) β̂ ∼ N(β, (X′WX)−1)
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Proposed Estimation Strategies

Candidate Sub-model Estimator

To get this estimator we need to maximize the
log-likelihood under the restrictions Hβ = h.
Using penalty function method to form a modified
likelihood:

F (β,λ) =
n∑

i=1

[(yiθi − b(θi)) + logc(yi)] +

q∑
j=1

pj(hj − H′jβ)2.

Find the solution of Maxβ F (β,λ) for positive and fixed
values of pj , j = 1, · · · ,q.
Using Fisher’s scoring method, the solution for β will be
denoted by β̂(λ)
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Proposed Estimation Strategies

The restricted estimator β̃ is

β̃ = β̂ + (X′WX)−1H′
[
H(X′WX)−1H′

]−1
[h− Hβ̂].

Under some regularity conditions, it may be showed that that β̃
is a consistent estimator of β, and

√
n(β̃ − β)

d−→ Nk

(
0, J̃−1

)
,

J̃−1 = (X′WX)−1
[
I− H′{H(X′WX)−1H′}−1H(X′WX)−1

]
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Torturing Data Until it Confesses: Cure for the Cold

Pooling Data: Making Sense or Folly?

Can ginseng prevent colds?
Edmonton company CV Technologies Inc. has conducted
clinical trials, with results published in the Journal of the
American Geriatrics Society showing that their proprietary
ginseng extract can prevent colds.
Later, an article was published in the Vancouver Sun, in
which two researchers from the UBC criticized the claims.

They suggested that trials do not provide definite evidence
that the product had any effect.

What’s is going on here?
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Torturing Data Until it Confesses

The study consisted of two randomized clinical trials (2000
and 2001), with nursing-home patients as subjects.
In each trial, the subjects were randomly assigned to take
either 200 mg of the ginseng extract or a placebo twice
daily.

The trials were conducted as double-blind studies.
It obtained results that indicated a reduction in
laboratory-confirmed respiratory illness (colds and flu).

Results were statistically significant.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The study consisted of two randomized clinical trials (2000
and 2001), with nursing-home patients as subjects.
In each trial, the subjects were randomly assigned to take
either 200 mg of the ginseng extract or a placebo twice
daily.

The trials were conducted as double-blind studies.
It obtained results that indicated a reduction in
laboratory-confirmed respiratory illness (colds and flu).

Results were statistically significant.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The study consisted of two randomized clinical trials (2000
and 2001), with nursing-home patients as subjects.
In each trial, the subjects were randomly assigned to take
either 200 mg of the ginseng extract or a placebo twice
daily.

The trials were conducted as double-blind studies.
It obtained results that indicated a reduction in
laboratory-confirmed respiratory illness (colds and flu).

Results were statistically significant.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The study consisted of two randomized clinical trials (2000
and 2001), with nursing-home patients as subjects.
In each trial, the subjects were randomly assigned to take
either 200 mg of the ginseng extract or a placebo twice
daily.

The trials were conducted as double-blind studies.
It obtained results that indicated a reduction in
laboratory-confirmed respiratory illness (colds and flu).

Results were statistically significant.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

Professors criticized the claims, accusing the article’s
authors of data-mining, and saying that the trials were not
definitive evidence that the product had any effect.

The original purpose of the studies was to see whether the
ginseng extract would reduce the incidence of respiratory
illnesses as defined by symptoms such as cough, sore
throat, and runny nose.

A secondary purpose of the studies was to measure the
difference in the incidence of laboratory-confirmed
respiratory illness (influenza or respiratory syncytial virus)
between the two groups.
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Torturing Data Until it Confesses

The results found no significant difference between the
placebo and the (ginseng extract) groups for the number of
(acute respiratory illnesses) defined by symptoms.

They also found no significant difference in the severity or
duration of symptoms related to (acute respiratory
illnesses) between the two groups in either study.

However, when the researchers pooled the data from the
two studies, they did get statistically significant results.

Pooling Data: Making Sense or Folly?

Case Study: Introduction to Probability and Statistics, 2e,
Mendenhall, Beaver, Beaver and Ahmed, 2010, pp 365,
406-407.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The results found no significant difference between the
placebo and the (ginseng extract) groups for the number of
(acute respiratory illnesses) defined by symptoms.

They also found no significant difference in the severity or
duration of symptoms related to (acute respiratory
illnesses) between the two groups in either study.

However, when the researchers pooled the data from the
two studies, they did get statistically significant results.

Pooling Data: Making Sense or Folly?

Case Study: Introduction to Probability and Statistics, 2e,
Mendenhall, Beaver, Beaver and Ahmed, 2010, pp 365,
406-407.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The results found no significant difference between the
placebo and the (ginseng extract) groups for the number of
(acute respiratory illnesses) defined by symptoms.

They also found no significant difference in the severity or
duration of symptoms related to (acute respiratory
illnesses) between the two groups in either study.

However, when the researchers pooled the data from the
two studies, they did get statistically significant results.

Pooling Data: Making Sense or Folly?

Case Study: Introduction to Probability and Statistics, 2e,
Mendenhall, Beaver, Beaver and Ahmed, 2010, pp 365,
406-407.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The results found no significant difference between the
placebo and the (ginseng extract) groups for the number of
(acute respiratory illnesses) defined by symptoms.

They also found no significant difference in the severity or
duration of symptoms related to (acute respiratory
illnesses) between the two groups in either study.

However, when the researchers pooled the data from the
two studies, they did get statistically significant results.

Pooling Data: Making Sense or Folly?

Case Study: Introduction to Probability and Statistics, 2e,
Mendenhall, Beaver, Beaver and Ahmed, 2010, pp 365,
406-407.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The results found no significant difference between the
placebo and the (ginseng extract) groups for the number of
(acute respiratory illnesses) defined by symptoms.

They also found no significant difference in the severity or
duration of symptoms related to (acute respiratory
illnesses) between the two groups in either study.

However, when the researchers pooled the data from the
two studies, they did get statistically significant results.

Pooling Data: Making Sense or Folly?

Case Study: Introduction to Probability and Statistics, 2e,
Mendenhall, Beaver, Beaver and Ahmed, 2010, pp 365,
406-407.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

The results found no significant difference between the
placebo and the (ginseng extract) groups for the number of
(acute respiratory illnesses) defined by symptoms.

They also found no significant difference in the severity or
duration of symptoms related to (acute respiratory
illnesses) between the two groups in either study.

However, when the researchers pooled the data from the
two studies, they did get statistically significant results.

Pooling Data: Making Sense or Folly?

Case Study: Introduction to Probability and Statistics, 2e,
Mendenhall, Beaver, Beaver and Ahmed, 2010, pp 365,
406-407.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Torturing Data Until it Confesses

Combining the two studies erodes the credibility of the
results: Taking two studies that do not show a benefit and
then adding them together to get a positive result is a form
of data-mining. It’s torturing the data until it confesses.

If the original intent had been to combine the results of the
two studies, then it would be a legitimate technique, but if
not, it might seem that the researchers did a second study
because they did not like the initial results.
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Proposed Estimation Strategies

Hypothesis Testing

H0 : Hβ = h Ha : Hβ 6= h

Test Statistics

Likelihood Ratio Test (LRT)

D = 2[l(β̂; y1, · · · , yn)− l(β̃; y1, · · · , yn)]

= (Hβ̂ − h)′H(X′WX)−1H′(Hβ̂ − h) + op(1)

Wald Test Statistic

D1 = (Hβ̂ − h)′H(X′WX)−1H′(Hβ̂ − h)

Rao Score Test

D2 = (z− η)′W′X(X′WX)−1X′W(z− η)
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Proposed Estimation Strategies

Pretest Estimator

The pretest estimator (PTE) of β based on β̂ and β̃ is defined
as

β̂
PT

= β̂ − (β̂ − β̃)I(D ≤ χ2
q,α), q ≥ 1,

I(A) is an indicator function of a set A and χ2
q,α is the α-level

critical value of the distribution of D under H0.
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Proposed Estimation Strategies

Shrinkage and Positive Shrinkage Estimator

The shrinkage estimator (SE) of β can be defined as:

β̂
S

= β̃ +
(

1− (q − 2)D−1
)

(β̂ − β̃), q ≥ 3,

The positive shrinkage estimator which will control the possible
over-shrinking problem is defined as

β̂
S+

= β̃ +
(

1− (q − 2)D−1
)+

(β̂ − β̃),

where z+ = max(0, z).
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Executive Summary

Bancroft (1944) suggested a preliminary test strategy for
variable selection and post parameter estimation.
Stein (1956, 1966) developed highly efficient shrinkage
estimators in balanced designs. Most statisticians have
ignored these (perhaps due to lack of understanding)
Modern regularization estimators based on penalized least
squares with multiple quadratic penalties extend Stein’s
procedures powerfully. This story, whose technical
development relies on current empirical process theory,
has only begun.

Moral of the Story

There is no suffering, no cause of suffering, no cessation of
suffering, and no path. [R. Beran, 2010]
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LEAST ABSOLUTE SHRINKAGE and SELECTION
OPERATOR (LASSO)

Variable selection via penalized estimation is appealing for
dimension reduction.
LASSO (Tibshirani, 1996) is a method that effectively (?)
performs variable selection and regression coefficient
simultaneously.
The LASSO employs an L1 type penalty on the regression
coefficients which tends to produce sparse models, and
thus is often used as a variable selection tool
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LASSO

It is a constrained version of ordinary least squares. The
LASSO estimate β̂(λ) is the solution to

β̂λ = minβ(y− x′β)′(y− x′β) subject to
p∑

j=1

|βj | ≤ s,

for some number s ≥ 0 is a tuning parameter (shrinkage
factor)

Using a Lagrange multiplier argument, it can be shown that
it equivalent to minimizing the residual sum of squares plus
a penalty term on the absolute value of the regression
coefficients.
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LASSO

Penalized Likelihood

An alternative formulation of the LASSO is to solve the
penalized likelihood problem

min
1
n

(y− Xβ)T (y− Xβ) + λ

d∑
j=1

| βj |

for some λ ≥ 0.

When the value of s is very large (or equivalently in λ = 0),
the constraint (or equivalently the penalty term) has no
effect and and the solution is just the set of LSE from the
full model.
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LASSO

Alternatively, for small values of s (or equivalently large
values of λ) some of these resulting estimated regressions
coefficient are exactly zero, effectively (?) omitting
predictor variables from the model.
LASSO performs variable selection and regression
coefficients estimation simultaneously

Knight and Fu (2000) studied the asymptotic properties of
Lasso-type estimators.

They showed that under appropriate conditions, the
LASSO estimators are consistent for estimating the
regression coefficients, and the limit distribution of the
LASSO estimators can have positive probability mass at 0
when the true value of the parameter is 0.
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Absolute Penalty Estimator (APE)

Algorithms

Efron et al. (2004, Annals of Statistics,32) proposed an
efficient algorithm called Least Angle Regression (LARS)
that produce the entire Lasso solution paths in only p
steps. In comparison, the classical Lasso require hundreds
or thousands of steps.
LARS, least angle regression provides a clever and very
efficient algorithm of computing the complete LASSO
sequence of solutions as s is varied from 0 to∞
Friedman, et al. (2007) developed the coordinate descent
(CD) algorithm for penalized linear regression and
penalized logistic regression and was shown to gain
computational superiority.
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Absolute Penalty Estimator (APE)

LASSO Family – Ever Growing

SCAD (Fan, 1997; Fan and Li, 2001)
Lasso and Dantzig Selector(Dasso), Candes and Tao
(2007)
Relaxed Lasso (Relaxo)
Adaptive Lasso
Examples include the bridge regression (Frank and
Friedman, 1993), the nonnegative garrote (Breiman, 1995)
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Absolute Penalty Estimator

Extension to Semiparametric Models

Ahmed et al. (2008, 2009), Raheem, Ahmed and Doksum
(2011) introduced Absolute Penalty Type Estimator for
partially linear models.

Fallahpour, Ahmed and Doksum (2011) introduced
Absolute Penalty Type Estimator for partially linear models
with Random Coefficient autoregressive Errors.

Further, they proposed shrinkage and pretest estimators
for regression parameter vector

A relative performance of all these competitive estimators
were showcased.
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Least Absolute Selection and Shrinkage, Exponential
Family Edition (LASSÉ)

L1 Type Estimator

Park and Hastie (2006)) proposed an algorithm (called
glmpath) that generates the coefficient paths for the L1
regularization problems as in LASSO problems, but in
which the squared loss function is replaced by the negative
log-likelihood of any distribution in the exponential family.
We refer to the Park-Hastie procedure as LASSÉ (least
absolute selection and shrinkage, Exponential family
edition).
It is a useful tool for selecting variables according to the
amount of penalization on the L1 norm of the coefficients

It is similar to the LASSO strategy
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LASSÉ

The maximum likelihood solution for the natural parameter θ,
and thus β, with a penalization on the size of the L1 norm of the
coefficients (||β||1) i.e.,

β̂(λ) = argmin
β
{−l(β) + λ||β||1}

= −
n∑

i=1

[(yiθi − b(θi)) + logc(yi)] + λ||β||1,

λ > 0 is the regularization parameter.

If λ = 0, this just gives the maximum likelihood estimates.

However, larger values of λ produce shrunken estimate of
β, often with many components equal to zero.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



LASSÉ

The maximum likelihood solution for the natural parameter θ,
and thus β, with a penalization on the size of the L1 norm of the
coefficients (||β||1) i.e.,

β̂(λ) = argmin
β
{−l(β) + λ||β||1}

= −
n∑

i=1

[(yiθi − b(θi)) + logc(yi)] + λ||β||1,

λ > 0 is the regularization parameter.

If λ = 0, this just gives the maximum likelihood estimates.

However, larger values of λ produce shrunken estimate of
β, often with many components equal to zero.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



LASSÉ

The maximum likelihood solution for the natural parameter θ,
and thus β, with a penalization on the size of the L1 norm of the
coefficients (||β||1) i.e.,

β̂(λ) = argmin
β
{−l(β) + λ||β||1}

= −
n∑

i=1

[(yiθi − b(θi)) + logc(yi)] + λ||β||1,

λ > 0 is the regularization parameter.

If λ = 0, this just gives the maximum likelihood estimates.

However, larger values of λ produce shrunken estimate of
β, often with many components equal to zero.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



LASSÉ

The maximum likelihood solution for the natural parameter θ,
and thus β, with a penalization on the size of the L1 norm of the
coefficients (||β||1) i.e.,

β̂(λ) = argmin
β
{−l(β) + λ||β||1}

= −
n∑

i=1

[(yiθi − b(θi)) + logc(yi)] + λ||β||1,

λ > 0 is the regularization parameter.

If λ = 0, this just gives the maximum likelihood estimates.

However, larger values of λ produce shrunken estimate of
β, often with many components equal to zero.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



LASSÉ

The maximum likelihood solution for the natural parameter θ,
and thus β, with a penalization on the size of the L1 norm of the
coefficients (||β||1) i.e.,

β̂(λ) = argmin
β
{−l(β) + λ||β||1}

= −
n∑

i=1

[(yiθi − b(θi)) + logc(yi)] + λ||β||1,

λ > 0 is the regularization parameter.

If λ = 0, this just gives the maximum likelihood estimates.

However, larger values of λ produce shrunken estimate of
β, often with many components equal to zero.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



LASSÉ

The maximum likelihood solution for the natural parameter θ,
and thus β, with a penalization on the size of the L1 norm of the
coefficients (||β||1) i.e.,

β̂(λ) = argmin
β
{−l(β) + λ||β||1}

= −
n∑

i=1

[(yiθi − b(θi)) + logc(yi)] + λ||β||1,

λ > 0 is the regularization parameter.

If λ = 0, this just gives the maximum likelihood estimates.

However, larger values of λ produce shrunken estimate of
β, often with many components equal to zero.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



LASSÉ

Algorithms

Park and Hastie (2006), introduce an algorithm that
efficiently computes solutions along the entire
regularization path of the coefficient estimates as λ varies
by using the predictor-corrector method of
convex-optimization.

The final estimate is denoted as the LASSÉ estimator
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Adaptive Lasso

The adaptive L1GLM is the solution of

β̂
AL1
λ = −

n∑
i=1

[(yiθi − b(θi)) + lnc(yi)] + λ

k∑
i=1

|βi |wi ,

where wi ’s are adaptive weights defined as wi = |β̂i |−τ for
some positive τ , and β̂i is the maximizer of the log likelihood.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Adaptive Lasso

The intuition idea of the adaptive L1GLM is that, by
allowing a relatively higher penalty for coefficients inactive
predictors and lower penalty for coefficients of active
predictors, it is possible to reduce the estimation bias and
improve variable selection accuracy, compared with the
standard LASSO.
Theoretically, adaptive L1GLM enjoys oracle properties
(Zou, 2006) that LASSO does not have.
When k is fixed and n→∞, with some selected λ, then
the adaptive L1GLM selects the true model with probability
tending to one.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Adaptive Lasso

The intuition idea of the adaptive L1GLM is that, by
allowing a relatively higher penalty for coefficients inactive
predictors and lower penalty for coefficients of active
predictors, it is possible to reduce the estimation bias and
improve variable selection accuracy, compared with the
standard LASSO.
Theoretically, adaptive L1GLM enjoys oracle properties
(Zou, 2006) that LASSO does not have.
When k is fixed and n→∞, with some selected λ, then
the adaptive L1GLM selects the true model with probability
tending to one.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Adaptive Lasso

The intuition idea of the adaptive L1GLM is that, by
allowing a relatively higher penalty for coefficients inactive
predictors and lower penalty for coefficients of active
predictors, it is possible to reduce the estimation bias and
improve variable selection accuracy, compared with the
standard LASSO.
Theoretically, adaptive L1GLM enjoys oracle properties
(Zou, 2006) that LASSO does not have.
When k is fixed and n→∞, with some selected λ, then
the adaptive L1GLM selects the true model with probability
tending to one.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Adaptive Lasso

The intuition idea of the adaptive L1GLM is that, by
allowing a relatively higher penalty for coefficients inactive
predictors and lower penalty for coefficients of active
predictors, it is possible to reduce the estimation bias and
improve variable selection accuracy, compared with the
standard LASSO.
Theoretically, adaptive L1GLM enjoys oracle properties
(Zou, 2006) that LASSO does not have.
When k is fixed and n→∞, with some selected λ, then
the adaptive L1GLM selects the true model with probability
tending to one.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Smoothly Clipped Absolute Deviation

Fan and Li (2001) proposed the smoothly clipped absolute
deviation (SCAD) method for linear and generalized linear
models.
This method selects variables and estimate parameters β
simultaneously by maximizing the penalized likelihood
function

β̂
SCAD
λ = −

n∑
i=1

[(yiθi − b(θi)) + lnc(yi)] + λ

k∑
i=1

pλ(|βi |),

where pλ(·) is the SCAD penalty with a tuning parameter λ
to be selected by a data-driven method.
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Smoothly Clipped Absolute Deviation

The penalty pλ(·) satisfies pλ(0) = 0, and its first-order
derivative

p
′
λ(θ) = λ

[
I(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
I(θ > λ)

]
,

where a is some constant usually taken to be a = 3.7 and
(t)+ = tI{t > 0} is the hinge loss function.
This method consistently identifies inactive variables by
producing zero solutions for their associated regression
coefficients.
Fan and Li (2001) demonstrated that as n increases, the
SCAD procedure selects the true set of nonzero
coefficients with probability tending to one.
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Inference After Variable Selection

Post-Model Selection Estimation Difficulties

The variable selection process changes the properties of
the estimators
Regardless of sample size, the model selection step
typically has a dramatic effect on the sampling properties
of the estimators.
As well as the properties of standard inferential procedures
(tests and confidence intervals)
The regression coefficients obtained after variable
selection are biased
Further, the p-values obtained after variable selection from
standard statistics are generally much smaller than their
true values.
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Inference After Variable Selection

Innate Difficulties of Data Driven Model Selection

The Data-driven model selection that do not seem to have
been widely appreciated or that seem to be viewed too
optimistically
Despite some claims to contrary, no model selection
procedure either implemented on a machine or not is
immune to these difficulties.[Leeb and Potscher, 2005]

ARE LASSO, APE, and LASSÉ are IMMUNIZED????
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Asymptotic Treatment

Consider a sequence K(n) of local alternatives defined by

K(n) : Hβ = h +
δ√
n

δ = (δ1, δ2 · · · , δq) ∈ <q, a real fixed vector.

Note that for δ = 0, Hβ = h, for all n.

We define a quadratic loss function using a positive definite
matrix (p.d.m.) Q

L(β∗; Q) =
[√

n(β∗ − β)
]′Q [√n(β∗ − β)

]
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Asymptotic Analysis

The asymptotic distribution function of β∗ under k(n) by

G(y) = lim
n→∞

P
[√

n(β∗ − β) ≤ y|k(n)

]
,

where G(y) is nondegenerate distribution function.

The asymptotic distributional quadratic risk (ADR) by

R(β∗; Q) =

∫
· · ·
∫

y′QydG(y)

= trace(QQ∗)

Q∗ =

∫
· · ·
∫

yy′dG(y)

is the dispersion matrix for the distribution G(y).
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Mathematical Proof

Theorem: Under local alternatives k(n) and usual regularity conditions we have the
ADB of the proposed estimators as n→∞ in the following:

ADB(β̂) = 0, (1)

ADB(β̃) = −Jδ, J = (X′WX)−1H′[H(X′WX)−1H′]−1, (2)

ADB(β̂
PT

) = JδΨq+2(q − 2,∆), (3)

ADB(β̂
S

) = −(q − 2)JδE(χ−2
q+2(∆)), (4)

ADB(β̂
S+

) = −(q − 2)Jδ
[
E(χ−2

q+2(∆))− E(χ−2
q+2(∆)I(χ2

q+2(∆) < (q − 2)))
]

− JδΨq+2(q − 2,∆), (5)

The notation Ψν(q − 2,∆) is the distribution function of non-central chi-square
distribution with ν degrees of freedom and non-centrality parameter ∆.
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Mathematical Proof

Theorem: Under local alternatives k(n) and usual regularity conditions we have the

ADRs of β̂, β̃, β̂
PT

, β̂
S

and β̂
S+

are respectively:

R(β̂) = trace[Q(X′WX)−1],

R(β̃) = R(β̂)− trace[QJH(X′WX)−1] + δ′(J′QJ)δ,

R(β̂
PT

) = R(β̂)− trace[QJH(X′WX)−1]Ψq+2(q − 2,∆)

+ δ′(J′QJ)δ[2Ψq+2(q − 2,∆)−Ψq+4(q − 2,∆)],

R(β̂
S

) = R(β̂)− 2(q − 2)trace[QJH(X′WX)−1]{2E(χ−2
q+2(∆))

− (q − 2)E(χ−4
q+2(∆))}+ (q − 2)δ′(J′QJ)δ{2E(χ−2

q+2(∆))

− 2E(χ−4
q+2(∆)) + (q − 2)E(χ−4

q+4(∆))},

R(β̂
S+

) = R(β̂
S

)− δ′(J′QJ)δE [(1− (q − 2)χ−2
q+4(∆))2I(χ2

q+4(∆) < (q − 2))]

− trace[QJH(X′WX)−1]E [(1− (q − 2)χ−2
q+2(∆))2I(χ2

q+4(∆) < (q − 2))]

+ 2δ′(J′QJ)δE [(1− (q − 2)χ−2
q+4(∆))I(χ2

q+4(∆) < (q − 2))].

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Engineering Proof: Simulation

We use Monte Carlo simulation experiments to examine the risk performance of
proposed estimators based on large sample methodology under various
scenarios.

Our sampling experiment consists of different combinations of sample sizes, i.e.,
n = 100, 150, 200.

In this study we simulate binary response from the following model:

log
(

pi

1− pi

)
= ηi = x′iβ, i = 1, · · · , n,

pi = P(Y = 1| xi )

The covariate matrix x′i = (xi1, xi2, · · · , xin) has been drawn from a multivariate
standard normal distribution.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Engineering Proof: Simulation

We use Monte Carlo simulation experiments to examine the risk performance of
proposed estimators based on large sample methodology under various
scenarios.

Our sampling experiment consists of different combinations of sample sizes, i.e.,
n = 100, 150, 200.

In this study we simulate binary response from the following model:

log
(

pi

1− pi

)
= ηi = x′iβ, i = 1, · · · , n,

pi = P(Y = 1| xi )

The covariate matrix x′i = (xi1, xi2, · · · , xin) has been drawn from a multivariate
standard normal distribution.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Engineering Proof: Simulation

We use Monte Carlo simulation experiments to examine the risk performance of
proposed estimators based on large sample methodology under various
scenarios.

Our sampling experiment consists of different combinations of sample sizes, i.e.,
n = 100, 150, 200.

In this study we simulate binary response from the following model:

log
(

pi

1− pi

)
= ηi = x′iβ, i = 1, · · · , n,

pi = P(Y = 1| xi )

The covariate matrix x′i = (xi1, xi2, · · · , xin) has been drawn from a multivariate
standard normal distribution.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Engineering Proof: Simulation

We use Monte Carlo simulation experiments to examine the risk performance of
proposed estimators based on large sample methodology under various
scenarios.

Our sampling experiment consists of different combinations of sample sizes, i.e.,
n = 100, 150, 200.

In this study we simulate binary response from the following model:

log
(

pi

1− pi

)
= ηi = x′iβ, i = 1, · · · , n,

pi = P(Y = 1| xi )

The covariate matrix x′i = (xi1, xi2, · · · , xin) has been drawn from a multivariate
standard normal distribution.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Engineering Proof: Simulation

We use Monte Carlo simulation experiments to examine the risk performance of
proposed estimators based on large sample methodology under various
scenarios.

Our sampling experiment consists of different combinations of sample sizes, i.e.,
n = 100, 150, 200.

In this study we simulate binary response from the following model:

log
(

pi

1− pi

)
= ηi = x′iβ, i = 1, · · · , n,

pi = P(Y = 1| xi )

The covariate matrix x′i = (xi1, xi2, · · · , xin) has been drawn from a multivariate
standard normal distribution.

S. Ejaz Ahmed Joint work with S. Hossain and K. Doksum



Simulation Results

For simulation we consider the particular case of hypothesis H0 : β2 = 0, where
β2 is a k2 × 1 vector with k = k1 + k2.

We set the true value of β at β = (β1,β2) = (c(1.5, 2.5),β2) to generate the
binary response yi .

The summary of simulation result is provided for (k1, k2) = {(2, 3), (2, 5), (2, 7)}
and α = 0.05.

Our NSI is H0 : β2 = 0 and ∆? = ||β − β(0)||2
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Simulation Results

The performance of an estimator of β will be appraised using the mean squared
error (MSE) criterion.

All computations were conducted using the R statistical system (Ihaka and
Gentleman, 1996).

We have numerically calculated the relative MSE of β̃, β̂
PT

, β̂
S

, and β̂
S+

with
respect to β̂ by simulation.

The simulated relative efficiency (SRE) of the estimator β� to the maximum
likelihood estimator β̂ is denoted by

SRE(β̂ : β�) =
MSE(β̂)

MSE(β�)
,

Keeping in mind that the amount a SRE larger than one indicates the degree of
superiority of the estimator β� over β̂.
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Simulation Results
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Figure: Relative efficiency of the estimators as a function of
non-centrality parameter ∆∗ for sample sizes n = 150, and
insignificant parameters k2 = 3
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Simulation Results

Table: Simulated relative MSE with respect to β̂ for n = 150, k2 = 3.

∆? RE PTE SE PSE
0.0 1.727 1.340 1.153 1.201
0.2 1.749 1.265 1.147 1.171
0.4 1.597 1.026 1.105 1.115
0.6 1.433 0.929 1.069 1.071
0.8 1.123 0.957 1.053 1.053
1.0 0.913 0.988 1.046 1.046
1.2 0.704 0.999 1.042 1.042
2.0 0.373 1.000 1.032 1.032
4.0 0.258 1.000 1.024 1.024
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Figure: Relative MSE of the estimators as a function of non-centrality
parameter ∆∗ for sample sizes n = 150, and nuisance parameters
k2 = 7
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Simulation Results

Table: Simulated relative MSE with respect to β̂ for n = 150, k2 = 7.

∆? RE PTE SE PSE
0.0 3.184 1.447 1.822 1.926
0.2 3.020 1.421 1.839 1.912
0.4 3.061 1.124 1.668 1.709
0.6 2.680 0.990 1.481 1.488
0.8 2.058 0.983 1.388 1.391
1.0 1.716 0.993 1.312 1.313
1.2 1.352 0.997 1.268 1.268
2.0 0.739 1.000 1.177 1.177
4.0 0.572 1.000 1.118 1.118
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Simulation Results

Table: Relative efficiency of RE, SE, PSE, L1GLM, adaptive L1GLM,
and SCAD with respect to β̂ when ∆∗ = 0 and n = 200

Method k2 = 3 k2 = 5 k2 = 7 k2 = 11 k2 = 15 k2 = 20
Restricted 1.79 2.36 3.02 4.50 7.16 9.82

Pretest 1.53 1.81 2.19 2.65 2.67 2.72
Shrinkage 1.16 1.50 1.82 1.63 3.93 4.04

Positive Shrinkage 1.22 1.60 1.98 2.77 4.10 4.28
L1GLM 1.24 1.53 1.69 2.51 3.38 3.92

Adaptive L1GLM 1.34 1.55 1.77 2.53 3.51 4.02
SCAD 1.51 1.60 1.87 2.61 3.82 4.17
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Application: South African heart disease data

This data set collected on males in a heart disease high-risk region of western
Cape, South Africa.

A total of 462 individuals are included in this data set.

The objective of this study was to predict CHD (coronary heart disease)=1 or 0;
present or absent, from a set of covariates listed from below:

sbp: systolic blood pressure
tobacco: cumulative tobacco (kg) ldl: low densiity
lipoprotein cholesterol
adiposity: Adiposity level of fat tissue
famhist: family history of heart disease (Present, Absent)
typea: type A behavior
obesity: Obesity level
alcohol: current alcohol intake level
age: age in years at onset disease
chd: response, coronary heart disease
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Application: South African Heart Disease Data

Consider the full model

log
(

pi

1− pi

)
= β0 + β1 sbpi + β2 tobaccoi + β3 ldli + β4 adiposityi

+ β5 famhisti + β6 typeai + β7 obesityi + β8 alcoholi + β9 agei
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Application: South African Heart Disease Data

Table: Estimate (first row) and standard error (second row) for
tobacco (β1), ldl (β2), famhist (β3), age (β4), and typea (β5) on
coronary heart disease. The SRE column gives the relative efficiency
based on bootstrap simulation of the estimators with respect to UE.

Estimators β1 β2 β3 β4 β5 SRE
UE 0.541 0.399 0.190 0.607 0.342 1.0000

0.284 0.290 0.219 0.352 0.243
RE 0.506 0.377 0.194 0.699 0.321 2.520

0.245 0.257 0.204 0.277 0.231
PT 0.513 0.386 0.194 0.678 0.328 1.476

0.260 0.273 0.209 0.305 0.225
SE 0.522 0.391 0.193 0.661 0.332 1.327

0.265 0.278 0.212 0.322 0.238
PSE 0.523 0.391 0.192 0.654 0.333 1.547

0.266 0.275 0.212 0.309 0.237
L1GLM 0.407 0.285 0.133 0.538 0.203 1.789

0.233 0.238 0.162 0.266 0.198
Adaptive L1GLM 0.407 0.284 0.133 0.538 0.207 1.808

0.231 0.224 0.164 0.272 0.192
SCAD 0.387 0.239 0.132 0.483 0.184 1.879

0.201 0.292 0.156 0.238 0.178
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Envoi

Gauss provided two justifications for least squares:

The maximum likelihood argument in the Gaussian error
model.
The idea of risk, commonly known as the Gauss-Markov
theorem.

Stein’s 1956 paper revealed that neither maximum likelihood estimators nor
unbiased estimators have desirable risk functions when the dimension of the
parameter space is not small.

The SE and PSE outperforms the maximum likelihood estimator of the
regression parameter vector in the entire parameter space.
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Envoi

Shrinkage Versus LASSÉ

The LASSÉ dominates the SE when the number of restrictions on parameters
are small.

Shrinkage estimators outshines the LASSÉ estimation strategy for the large
number of restrictions on the parameter space.

More importantly, Our estimators, SE and PSE are FREE from Tuning
Parameters, and easy to compute.
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