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Abstract6

We consider the problem of clustering time dependent data. The model is7

a mixture of regressions, with variance-covariance matrices that are allowed8

to vary within the extended linear mixed model family. We discuss appli-9

cations to biomedical data and analyze two longitudinal data sets: one on10

patients with delirium, and the other on mosquito gene expression following11

infection.12

1 Introduction13

Model based clustering (MBC) is increasingly popular as a method for studying14

multivariate data. Most of the applications rely on the approach proposed by15

Banfield and Raftery (1993) and implemented in the R-package MCLUST. In16

this approach data are modeled as a mixture of multivariate normal distributions;17

an economic parameterization of the variance-covariance matrices is achieved by18

considering the spectral decomposition of the matrices.19

New challenges appear when analyzing longitudinal data with non-negligible20

correlations. We are interested in two broad areas of application: clustering dis-21

ease trajectories in a clinical setting, and clustering longitudinal data in gene22

expression at several points in time. The spectral decomposition is of limited help23

when working with such data, since it does not address the special form that the24

variance covariance matrices may take. In addition, longitudinal data consist of25

measurements taken repeatedly on a number of observational units, with the typ-26

ical feature, especially in clinical settings, that both the number of measurements27

and the time points may differ across individual units. Analysis of such data is28

usually performed using the extended linear mixed model (ELMM), see Pinheiro29

and Bates (2000). However, the ELMM usually assumes a Gaussian distribu-30

tion for all random effects and error terms. This assumption has been relaxed31

to include mixtures of Gaussian distributions; see, for instance, Belin and Rubin32

(1995), Tango (1998), Trottier (1998), Verbeke and Molenberghs (2000), Luan and33
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Li (2003), Gaffney and Smyth (2003), Celeux et al. (2005), Heard et al. (2006),34

Ng et al. (2006), De la Cruz-Mesa (2008). To the best of our knowledge, however,35

there is no fully developed method for simultaneously estimating parameters of36

both the random effects and the error term.37

While the primary methods presented in this paper have been developed else-38

where, their application is affected by several subjective choices, based on prag-39

matic considerations and on assumptions, only valid in specific contexts—these40

are the focus of the current paper. We study a general model for representing41

mixtures of longitudinal data that generalizes previous attempts: a mixture of42

ELLM (Section 2). We develop an EM approach to the estimation of its param-43

eters (Section 3) and validate it through simulations (Section 4). In Section 5 is44

we apply the model to the study of disease course, analyzing data on delirium45

in an elderly population. Section 6 presents an application to longitudinal gene46

expression data. Section 7 concludes the paper with a brief discussion.47

2 The model48

Let Yi(tij) be the observation of the ith individual at time tij , for i = 1, ... , n, j
= 1, ... , mi, where n is the number of individuals and mi is the number of time
points at which the ith individual has been observed. The ELMM can be written
as follows:

Yi = Xiβ + Zibi + εi (1)

where Xi and Zi are design matrices:

Xi =

 g1(ti1) ... gp(ti1)
... ... ...

g1(timi
) ... gp(timi

)

 , Zi =

 h1(ti1) ... hq(ti1)
... ... ...

h1(timi
) ... hq(timi

)

 ,

and:
β = (β1, ..., βp)

′
, bi = (bi1, ..., biq)

′
, εi ∼ N(0, σ2Λi)

with bi and εi assumed independent. Here, Yi is independent of Yj for i 6= j
and Λi is an mi × mi matrix that may depend on i through the time intervals
tij , j =1,...,mi but not otherwise. Typically, Λi is parameterized in terms of a
relatively small number of variance parameters. Furthermore, the distribution of
the random effects, bi, is assumed to be N(0,Ψ) where Ψ is a symmetric positive
definite matrix which may depend on parameters to be estimated. Finally, the
gi’s and the hi’s denote the elements of a basis in function space. In practice the
columns of Zi are often chosen as a subset of the columns of Xi. We have:

Yi | bi ∼ N(Xiβ + Zibi, σ
2Λi)

and:
Yi ∼ N(Xiβ,Σi), Σi = (ZiΨZ

T
i + σ2Λi).

The random effects bi may be considered as missing data, and maximum like-
lihood estimation is done by the EM algorithm (see Lindstrom and Bates (1988)).
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Since the joint likelihood of (yTi , b
T
i )T is equal to that of ((yi | bi)T , bTi )T , we have:[

yi | bi
bi

]
∼ N

((
Xiβ + Zibi

0

)
,

[
σ2Λi 0

0 Ψ

])
(2)

Then, as is done for missing data, we can write the “complete data” log-
likelihood (Trottier 1998):

l(β, σ2,Ψ,Λ | y, b) =

− 1

2

n∑
i=1

(
mi log(2π) +mi log(σ2) + log(| (Ψ) |) + log(| (Λi) |)

+ bTi (Ψ−1)bi +
(Yi −Xiβ − Zibi)T (Λi)

−1(Yi −Xiβ − Zibi)
σ2

)
.

(3)

Under the assumption that the n individuals are sampled from K distinct compo-
nent distributions, we can write

Yi =

K∑
k=1

αk(Xiβk + Zibi(k) + εi(k)) (4)

where the αk’s are the mixing coefficients:49

Under this model formulation, each component, k, is distinct, uniquely defined
by βk, Ψk, σ2

k, and Λk. The log-likelihood of the mixture model can be defined as:

n∑
i=1

log
( K∑
k=1

αk exp
{
lk(βk, σ

2
k,Ψk,Λk | yi, bi(k))

})
(5)

where, lk(·|·) is given in Equation (3). Direct maximization of the log-likelihood
can be quite difficult due to the sum of terms inside the logarithm. However,
we can again complete the data by considering the unobserved latent indicator
variables δi(k), which is equal to 1 if observation i belongs to cluster k and 0
otherwise, and write the complete data log-likelihood (Celeux et al., 2005):

l =

n∑
i=1

K∑
k=1

{
δi(k) log(αk) + δi(k)lk(βk, σ

2
k,Ψk,Λk | yi, bi(k))

}
(6)

where lk is as in equation (3). Thus, with this “double completion” of the data,50

maximum likelihood estimates of the parameter vector θ = (α, β, σ2,Ψ,Λ) can be51

obtained using an EM approach as described in the next section.52

3 Model estimation and inference53

3.1 EM algorithm54

The EM algorithm consists of iterating until convergence between the following E-
and M-steps. At iteration q > 0, the E-step consists of computing the expectation
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of the ‘complete’ log-likelihood knowing the observed data and a current value for
the parameters θ[q] = (α[q], β[q],Ψ[q], (σ2)[q],Λ[q]), i.e.:

Q(θ | θ[q]) = E
[
l(θ | y, δ, b) | y, θ[q]

]
=

n∑
i=1

K∑
k=1

(
τ
[q]
i(k) log(αk) + τ

[q]
i(k)E

[
lk(βk, σ

2
k,Ψk,Λk | yi, bi(k)) | y, θ[q]

])
where the complete data log-likelihood l is given in Equation (6), and τ

[q]
i(k) =

E[δi(k)|y, θ[q]] are the so-called posterior probabilities of component membership,
computed by:

τ
[q]
i(k) = P (i ∈ Ck | yi, θ[q], α[q]) =

α
[q]
k gmi

(yi | θ[q]k )∑K
l=1 α

[q]
l gmi

(yi | θ[q]l )

where Ck denotes the k-th cluster and gmi(yi|θ
[q]
k ) = exp(lk(θ

[q]
k |yi)) denotes the55

density of the k-th mixture component. The M-step consists of setting θ[q+1] =56

arg maxθ Q(θ | θ[q]). Details are given in Appendix A. Suffice it to say here that57

the M-step uses the same numerical methods for the estimation of the parameters58

of the Λi matrix as in the R functions lme and gls; therefore, though our approach59

follows essentially Celeux et al. (2005), it also borrows from Pinheiro and Bates60

(2000).61

3.2 Initial values62

It is well known that the EM algorithm can be quite sensitive to the choice of63

starting values. A number of different strategies for choosing starting values have64

been proposed(McLachlan and Peel, 2000). Following Celeux et al.(2005), we per-65

form a large number of short runs(10 iterations) of the EM from different k -means66

results. The starting values which initialized the best “short run” solution (i.e.67

the short-run solution to achieve the highest log-likelihood), are then selected as68

starting values. When the number of observations is not equal across individuals,69

k -means is performed on regression parameters obtained from linear regressions70

on each individual.71

3.3 Standard Errors72

The asymptotic covariance matrix of the maximum-likelihood estimates, θ̂, is equal73

to the inverse of the expected Information matrix, I(θ), which can be approxi-74

mated by following Louis(1982)’s decomposition of I(θ̂):75

I(θ̂) = Eη(B(y, θ))− Eη(S(y, θ)ST (y, θ)) + Eη(S(y, θ))Eη(ST (y, θ)) (7)

where η represents the missing data, y, the observed data and:

B(y, θ) =
∂2 log l(θ | y)

∂θ2
, S(y, θ) =

∂ log l(θ | y)

∂θ
(8)
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Figure 1: Histograms of number of clusters retrieved by the algorithm when 1
cluster is simulated using AIC(left panel) and BIC(right panel).

The standard errors of θ̂ are then given by the diagonal elements of (I−1(θ̂))1/2.76

See Appendix B for details.77

3.4 Assessing the Number of Clusters78

Assessing the “correct” number of components or clusters in finite mixture models79

is a fundamental and challenging question. The minimum AIC (Akaike Informa-80

tion Criterion) and BIC (Bayesian Information Criterion) rules are popular choices81

and both are presented in our analysis. The performance of the minimum AIC82

and BIC rules is investigated in simulation studies presented in the next Section.83

4 Evaluation through simulation84

We performed a limited simulation study. We varied K from 1 to 7. For every85

fixed K, we generated 100 samples from K multivariate normal distributions with86

exchangeable variance-covariance matrices and expectations linear in time; we then87

applied our method to estimate the parameters and chose the number of clusters88

using both the AIC and the BIC. This was repeated 100 times. The detailed89

forms of the distributions were chosen so as to mimic the results of the example90

described below. We give in Figures 1, 2 and 3, the results for K = 1, 3 and 691

in the form of frequencies of number of retrieved class within the 100 repetitions.92

As it can be seen, both criteria perform reasonably well, with a tendency towards93

more conservative choices for the BIC and more liberal ones for the AIC. Though94

we have not carried out systematic explorations beyond those reported here, our95

experience suggests that the behaviour of the AIC and BIC is essentially the same96

in many situations.97
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Figure 2: Histograms of number of clusters retrieved by the algorithm when 3
clusters are simulated using AIC(left panel) and BIC(right panel).

Figure 3: Histograms of number of clusters retrieved by the algorithm when 6
clusters are simulated using AIC(left panel) and BIC(right panel).

5 Disease Trajectory Data: Delirium98

Delirium is a condition often encountered in hospitalized elderly populations. The99

Delirium Index (DI), is a validated measure of delirium severity developed at St.100

Mary’s Hospital, (McCusker et al. 2004). DI scores range from 0 to 21 and101

higher scores indicated more severe delirium. We used data from 229 St. Mary’s102

patients hospitalized between 1996 and 1999. Patients were evaluated with the103

DI at enrolment, and several times during the following 15 days. Measurement104

times were unequally spaced and differed across individuals. In order to account105

for correlation among repeated measurements, four different models were fit:106

Independence
yi = β0 + β1xi + εi, εi ∼ N(0, σ2Id)
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Component α β σ2 Ψ φ
1 – Steady Course 0.153 11.692, -0.015 3.912 3.428 0.438
2 – Fluctuating 0.224 9.956, 0.0078 23.171 2.059 0.387
3 – Worsening 0.204 5.742, 0.032 1.340 2.602 0.001
4 – Recovery 0.139 4.451, -0.343 2.912 0.550 0.615
5 – Fluctuating Recovery 0.279 8.569, -0.316 6.105 2.750 0.215

Table 1: Parameter Estimates for 5 cluster AR(1) and random intercept solution.
Except for the slopes of components 1 and 2, all parameters are significantly
different from zero at the 0.05 level according to likelihood ratio tests.

Random Intercept

yi = β0 + β1xi + bi + εi, εi ∼ N(0, σ2Id)

Autoregressive

yi = β0 + β1xi + εi, εi ∼ N(0, σ2Ri), Ri = AR(1)(φ)

Random intercept and autoregressive

yi = β0 + β1xi + bi + εi, εi ∼ N(0, σ2Ri), Ri = AR(1)(φ)

The DI curves have a great variety of shapes and by fitting a mixture model to107

the longitudinal data, it is our goal to reduce these shapes to a few “typical” ones108

which may be interpreted as distinct courses of the illness. Figure 4 shows AIC109

and BIC values for the 28 different models fit. A 5-component model with both110

AR(1) correlation and random intercept is selected for further investigation as it111

provides good clinical interpretation and is the best model according to the AIC.112

The mixture model has log-likelihood of -3118.480, AIC = 6284.961 and BIC =113

6407.968. Parameter estimates appear in Table 1.114

5.1 Interpretation115

The steady course component represents a course that is quite stable: the slope116

is negligible (and non-significant at the 0.05 level) and the variance parameter117

reasonably small. The fluctuating course component is similar to the first, but118

the variance is large, suggesting that patients fluctuate around a stable state. The119

component named worsening has a positive slope, indicating a DI that increases120

in time, hence a worsening of the delirium. The remaining two components have121

negative slopes and are therefore named recovery: however, in one of them we122

have a high variance and therefore we qualify the recovery as fluctuating. From a123

general point of view, differences in the variance parameters may seem uninterest-124

ing. However in delirium studies it is very important to identify components with125

large fluctuations since fluctuating severity is considered a fundamental character-126

istics of ‘true’ delirium.127
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(a) AIC

(b) BIC

Figure 4: AIC and BIC for different models across K

5.2 Remarks128

A few comments are in order. Firstly, the four models considered in this analysis129

do not exhaust the possibilities of the ELMM. For example we could have fitted130

a model with random intercept and slope; unfortunately further exploration was131

limited by computational power. However, we have chosen the four models that132

are most currently used in biostatistical practice when analyzing longitudinal data:133

they reflect simple and intuitive hypotheses as to how correlation might arise.134

Secondly, it should be noted that, as the AIC and BIC curves show, the selec-135

tion of the number of clusters depends on the model. While this may be seen as136

a limitation, it is by no means an uncommon occurrence: for example this depen-137
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dence is commonly observed when working with mixtures of multivariate normal138

distributions and allowing hypotheses other than homoscedasticity, e.g. using the139

mclust R package (Banfield and Raftery, 1993).140

Thirdly, the determination of the number of classes remains a fairly subjective141

exercise. Indeed neither the AIC nor the BIC provide absolutely objective criteria,142

as is demonstrated by the numerous alternatives proposed in the litterature. In143

this work we have not attempted to develop new approaches, but have limited144

ourselves to the most popular ones.145

Fourthly, though we have shown by limited simulations that the BIC works bet-146

ter than the AIC in our context, we have actually preferred to retain the 5-cluster147

solution corresponding to the minimum AIC rather than the 2-cluster solution148

which minimizes the BIC. This illustrates both the limits and the advantages of149

using a certain degree of subjectivity. Indeed, the BIC of the 5-cluster solution150

is not very different from the minimum BIC. On the other hand, a five cluster151

solution was proposed in a previous work on delirium by Sylvestre et al. (2006),152

who applied an exploratory approach combining principal component analysis with153

k-means clustering. The interpetation of our 5-clusters is very similar to the in-154

terpretation of the five clusters found by these authors, yet it has the advantage155

of being model based.156

Finally, though we have not studied robustness systematically, we have found157

that the point estimates of the fixed effect coefficients are fairly stable regardless158

of whether or not we include the random effect and/or the AR(1) term. This is159

encouraging, but further explorations are desirable.160

6 Time-course gene expression data161

Microarray analysis is a valuable tool in molecular biology, as it permits to assess162

the expression levels of a large number of genes simultaneously. In view of the163

complexity of biological networks, it is useful to study gene expression not only164

at a specific point in time, as in early microarray experiments, but also longitu-165

dinally. Expression time profiles can indeed be very useful to find co-regulated166

and functionally related groups of genes. We analysed a set of longitudinal gene167

expression data already studied by Heard et al. (2002). The data consists of 2771168

gene expression time profiles (each with 6 non-equally spaced observations) from169

mosquitoes which have been infected with a bacterial agent. Visualization of the170

raw data is not very informative (Figure 5).171

Heard et al. (2002) proposed a Bayesian model-based hierarchical clustering172

algorithm to cluster genes having similar expression profiles that led to a 17-cluster173

solution. From this, interpretable graphs were obtained. Their solution assumed174

data to be uncorrelated, so that in practice their model is a mixture of ordinary175

regressions. In contrast, we used the wealth of submodels within the ELMM to find176

a non-trivial correlation structure that fits the data. To model the trajectories, we177

used a flexible family of basis functions called the truncated power spline basis, as178

in Heard et al. (2002):179
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Figure 5: and heat map of the Salmonella typhi data presented in Heard et al.
(2002)

g1(tis) = 1 gj(tis) = (tis − ti,j−1)+, s = 1, ..., n, j = 2, ...,mi

where (·)+ is the positive part function.180

We fit three different correlation structures: an independence model, an au-181

toregressive model as well as a model with random intercept and autoregressive182

structure. We varied K from 1 to 26. According to the BIC, see Figure 6, the183

best model is a 14-cluster model with both random intercept and autoregressive184

structure. A heatmap of the data is presented in Figure 7. Comparing the fitted185

values(right) across clusters gives a visual measure of between cluster heterogene-186

ity. Comparing the fitted values(right) to the raw observations(left) gives a sense187

of within cluster homogeneity. The clustering is shown in more detail in Figure 8.188

7 Discussion189

We have presented a straightforward method for modeling heterogeneity in longi-190

tudinal data. We have proposed a mixture of regressions with components in the191

Extended Linear Mixed Model (ELMM) (Pinheiro and Bates, 2000). The ELMM192

consists of a random effect portion (LMM) extended by the addition of an error193

term with correlation matrix defined up to a small number of parameters to be194

estimated from data. We have limited ourselves to an autoregressive error term.195

Our approach to parameter estimation is based on the EM algorithm of Celeux196

et al. (2005) for mixtures of LMM, augmented by numerical methods which are197

essentially those used in the lme and gls R functions of Pinheiro and Bates (2000).198

The theoretical novelty of this approach is modest: it permits, on the one hand,199

to deal with correlated errors of a type that is important in applied research, and,200

on the other, suggests further extension to a catalog of possible error correlation201

structures such as those contained in the lme and gls R functions. Although other202

authors have considered mixtures of regressions for longitudinal data, no one has203
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Figure 6: log-likelihood, AIC and BIC plots for different mod-
els(independence(red), autoregressive(green) and autoregressive with random
intercept(blue)) fit for K = 1,...26

Figure 7: Clustered gene expression profiles form the Salmonella typhi data

yet achieved the generality that can be achieved with the ELMM. An appropri-204

ate modeling of the correlation structure of longitudinal data is important: not205

only does it provide useful insight into the dynamical process under study, but it206

also leads to fewer clusters, hence to a more economical model of the data. We207
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Figure 8: 14 cluster solution suggested by autoregressive AR(1) model with ran-
dom intercept model. BIC = 14528.19

have also shown that mixtures of regressions offer an important tool in classify-208

ing course of diseases from clinical data and longitudinal gene expression data,209

providing easy-to-interpret analyses.210

Further research will aim to speed up the EM algorithm, which will also allow211

us to study even richer correlation structures. Amelioration of computing efficiency212

will allow us to carry out more extensive simulations and to study the robustness213

of key features of our models, e.g. fixed effect parameter estimates and selection214

of the number of clusters. We plan also to revisit the Bayesian approach of Heard215

et al. (2002).216
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[4] De la Cruz-Meśıa, R., Quintana, F.A., Marshall, G. (2008) “Model Based226

Clustering for Longitudinal Data.” Computational Statistics and Data Anal-227

ysis 52: 1441–1457.228

[5] Gaffney, S.J., Smyth, P. (2003). “Curve clustering with random effects regres-229

sion mixtures.” In: Bishop, C.M., Frey, B.J. (Eds.), Proceedings of the Ninth230

International Workshop on Artificial Intelligence and Statistics, KeyWest,231

FL.232

[6] Heard, Holmes, Stephens (2006). “A Quantitative Study of Gene Regulation233

Involved in the Immune Response of Anopheline Mosquitoes: An Applica-234

tion of Bayesian Hierarchical Clustering of Curves.” Journal of the American235

Statistical Association 101(473): 18–29.236

[7] Jennrich and Schluchter (1986) Unbalanced Repeated-Measures Models with237

Structured Covariance Matrices238

[8] Luan Y., Li H. (2003). “Clustering of time course gene expression data using239

a mixed-effect model with B-splines.” Bioinformatics, 19, 474–482.240

[9] McCusker J, Cole M, Dendukuri N, Belzile E. (2004). “The Delirium Index,241

a Measure of the Severity of Delirium: New Findings on Reliability, Validity,242

and Responsiveness”. Journal of the American Geriatric Society, 52:1744-243

1749.244

[10] Ng, S. K., McLachlan, G. J., Wang, K., Ben-Tovim Jones, L., Ng, S. W. (2006)245

“A Mixture model with random-effects components for clustering correlated246

gene-expression profiles.” Bioinformatics 22: 1745–1752.247

[11] Pinheiro J.C., Bates D. (2000). Mixed-Effects Models in S and S-PLUS.248

Springer, New York.249

[12] Tango T. (1998). “A mixture model to classify individual profiles of repeated250

measurements.” In: Data Science, Classification and Related Topics (eds by251

C. Hayashi, et al.), Springer-Verlag, Tokyo, 247–254.252

[13] Sylvestre, M. P., McCusker, L., Cole, M., Regeasse, A. Belzile, E., and Abra-253

hamowicz, M. (2006). “Classification of patterns of delirium severity scores254

over time in an elderly population.” International Psychogeriatrics, 18: 667–255

680.256

A Details on the M-step of the EM algorithm257

We have for the q+1 th step:

α
[q+1]
k =

n∑
i=1

τ
[q]
i(k)

n
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β
[q+1]
k =

( n∑
i=1

τ
[q]
i(k)

(
(yi − Zib[q]i(k))

)T
((Λ

[q]
ik )−1)(−Xi)

)(
n∑
i=1

τ
[q]
i(k) (Xi)

T
((Λ

[q]
ik )−1)(−Xi)

)−1
T

(σ2
k)[q+1] =

1∑n
i=1 τi(k)[q]mi

n∑
i=1

τi(k)[q]
[
E(eTikΛ−1

ik eik | yi, θ
[q−1])

]
where

E(eTikΛ−1
ik eik | yi, θ

[q−1]) =

σ
4[q−1]
k (yi −Xiβ

[q−1]
k )TΣ

−1[q−1]
ik Λ

[q−1]
ik Σ

−1[q−1]
ik (yi −Xiβ

[q−1]
k )+

miσ
2[q−1]
k − σ4[q−1]

k tr(Σ
−1[q−1]
ik Λ

[q−1]
ik )

and

Ψ
[q+1]
k =

1∑n
i=1 τ

[q]
i(k)mi

n∑
i=1

τ
[q]
i(k)E(bi(k)b

T
i(k) | yi, θ

[q−1])

where

E(bi(k)b
T
i(k) | yi, θ

[q−1]) = E(bi(k) | yi, θ[q−1])E(bi(k) | yi, θ[q−1])T+

miΨ
[q−1]
k −Ψ

[q−1]
k ZTi Σ

−1[q−1]
ik ZiΨ

[q−1]
k

and
E(bi(k) | yi, θ[q−1]) = Ψ

[q−1]
k ZTi Σ

−1[q−1]
ik (yi −Xiβ

[q−1]
k )

Finally, consider the positive-definite matrices Λik (there are nK of these). There258

are different ways that such matrices may be parametrized, depending on as-259

sumptions regarding the intra-individual covariance structure (Pinheiro and Bates,260

2000). Let φk denote the set of parameters used in the parametrization of {Λik}i=1,...,n.261

To estimate these parameters at iteration [q], we use numerical maximization meth-262

ods (e.g the R function nlminb()).263

B Details on computing the standard error of θ̂264

Jennrich and Schluchter(1986) provide equations for the required score vector265

statistics and Hessian matrix in the homogeneous model. The required first and266

second derivatives for the mixture model are presented bellow. Derivatives with267

respect to the parameters that define Λ, (φ), must be calculated by numerical268

methods.269

∂l(θ | Y )

∂αk
=

n∑
i=1

δi(k)
αk
−
δi(K)

αK
, k=1,...,K−1 (9)

∂l(θ | Y )

∂βk
=

n∑
i=1

δi(k)(X
T
i )(Σ−1

ik ) (yi −Xiβk) , k=1,...,K (10)
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∂l(θ | Y )

∂σ2
k

=

n∑
i=1

δi(k)
2

tr(Σ−1
ik (yi −Xiβk)(yi −Xiβk)Σ−1

ik Λ−1), k=1,...,K (11)

∂l(θ | Y )

∂Ψk
=

n∑
i=1

δi(k)
2

tr(Σ−1
ik (yi −Xiβk)(yi −Xiβk)Σ−1

ik ZiZ
T
i ), k=1,...,K (12)

∂2l(θ | Y )

∂α2
k

=

n∑
i=1

−δi(k)
α2
k

−
δi(K)

α2
K

, k=1,...,K−1 (13)

∂2l(θ | Y )

∂β2
k

=

n∑
i=1

−δi(k)(XT
i Σ−1

ik Xi), k=1,...,K (14)

∂2l(θ | Y )

∂(σ2
k)2

=

n∑
i=1

−δi(k)
2

tr(Σ−1
ik ΛikΣ−1

ik (2(yi −Xiβk)(yi −Xiβk)T − Σik)Σ−1
ik Λik), k=1,...,K

(15)

∂2l(θ | Y )

∂σ2
k∂βjk

=

n∑
i=1

−δi(k)Xjk(Σ−1
ik ΛikΣ−1

ik (yi −Xiβk)), k=1,...,K j=1,...,p (16)

∂2l(θ | Y )

∂Ψ2
k

=

n∑
i=1

−δi(k)
2

tr(Σ−1
ik ZiZ

T
i Σ−1

ik (2(yi −Xiβk)(yi −Xiβk)T − Σik)Σ−1
ik ZiZ

T
i ), k=1,...,K

(17)

∂2l(θ | Y )

∂Ψk∂βjk
=

n∑
i=1

−δi(k)Xjk(Σ−1
ik ZiZ

T
i Σ−1

ik (yi −Xiβk)), k=1,...,K j=1,...,p (18)
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