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Interference Channels

 Random Codes optimal, if interference is “strong” or “noisy”
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[Sato 77, 81, Costa-ElGamal 87, Shang-Poor 11, Shang-Kramer-Chen 07, Annapureddy-Veeravalli 08, 09
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* Interference Alignment (Structured Coding)
- Asymptotic Alignment gives K/2 dof in K user

channel
- Lattice Coding yields approximate/exact capacity

[Cadambe-Jafar 07, 08, Bresler-Parekh-Tse 07, Cadambe-Jafar-Shamai 08, Sridharan-Jafarian-
Viswhanath-Jafar 08, Sridharan-Jafarian-Vishwanath-Jafar-Shamai 08]



Distributed Storage: Exact Repair of MDS Code

[Dimakis et. Al. 08, Wu-Dimakis 09]
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Distributed Storage: Exact Repair of MDS Code

[Dimakis et. Al. 08, Wu-Dimakis 09]

(n, k) MDS Code

X A.2 """ A.k; fk+1(A1,...,Ak) """ fn(AlvaAk)

Optimal to Download
1 o *
FDaritics of every (surviving) node

- Multi-Source (Wired) Network Capacity Problem
- Asymptotic Alignment Based Codes

* mimic random wireless Channels for coding parities
[Cadambe-Jafar-Maleki 10, Suh-Ramchandran 10]

*For k < n/2 solved with finite alignment based codes in
[Wu-Dimakis 09, Shah-Rashmi-Kumar-Ramchandran 08, Suh-Ramchandran 09]
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What can we do with finite
number of dimensions?

Common Invariant
Subspaces

Algebraic Geometry Tensor Products*T

[Cadambe-Jafar-Huang-Li 11]

[Bresler-Cartwright-Tse 11]

T Tensor Product framework generalizes finite codes of [Cadambe-Huang-Li, Tamo-Wang-Bruck,
Papailiopoulos-Dimakis ISIT 11]

*Also called Subspace Alignment, Introduced by [Suh-Tse 08]



Invariant Subspaces

Linear Operator (matrix) T :V — V

P
Subspace V C V is T-invariant iff

span(TV) C span(V)

i.e., V aligns with TV

V T - 17T CV

Examples:
e Trivial spaces: {0}, The universal space V.

e Ligen vector of T



Common Invariant Subspaces

V C Vis a Common Invariant Subspace of T, T, ..., T, iff

V is T;-invariant for all: =1,2,..., N
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Achieving K/2 DOF in K user Interference Channel

[Cadambe, Jafar, ITOS]
Ignore direct channels.

Enumerate all cross channels 71, 7>, --- , Tpn

vV . (v Critical assumption
Commutative property: T;7T; = T;7T;

(e.g. time-varying/frequency selective setting — diagonal channels)

X X~ ALL transmitters use the same signal space V
XX
V A‘A‘A’A

V4V
N\

ALl receivers set aside the same interference space V

V

19:01 17



Interference Alignment Scheme of [CJO0S8]

[Cadambe, Jafar, ITOS]

What is the interference space at Receiver 1 7

V — : I[l]

19:01 18



Interference Alignment Scheme of [CJO0S8]

[Cadambe, Jafar, ITOS]
ALl the interference at all the receivers: Z

Goal: MakeV =1

Main Insight of [CJO8]: Asymptotically common invariant spaces for commuta-
tive operators.
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(4,2) MDS Code - Repair Efficiency of a single failure

A+B A+ 2B

(Trivial Strategy) For a (n,k) Repair Bandwidth is k units

Can we do better?
*1 unit stored in every node



A1—|—B1

A+ Bo

2A, + B

3As + Bs

N — 4, k=2 [Wu-Dimakis 09]

Trivial Repair : 4 linear combinations

27



n =4,k = 2, Repair with 3 Linear Combinations
[Wu-Dimakis 09]

N\ yd
A
As
N
B, -
Bs
T Bi1+ B>

_» A1+ Ay + By + By,

A1‘|—B1 / E E
2A1 + 3A, —|—Bl +BQ

As + By 7

Interference Alignment!

2A, + B
3A5 + Bs

28



n =4,k = 2, Repair with 3 Linear Combinations

N /
A

2 T, Ty — 2Xx2

vV, — 2x1
R Ir --------------

B v,

o — Bi1 + By
/A1+A2+5B1+B2;
iy A\ ]
A2+52 i i

A-T]_ |—|‘)_A:1B_|TR21—/ ReCOVeI‘y of A nterrerence Alignmen
Az + D3 rank|T;V; V] =2 T2V1 — )\1V1

29



Repair for n=4, k=2

Tl,Tg — 2 X2
T2V1 :A]_V]_ Vl,VQ — 2 x1

rank[T1V1 Vl] =2

Repair of Node 1

T1Va = AVy

I'&Ilk[TQVQ VQ] = 2

Repair of Node 2

V, eigen-vector of Ts
V5 eigen-vector of T

Repair Vectors Vi, V5, — Beamforming Vectors in Wireless Comm.
Coding matrices T, T9, — Channel Matrices in Wireless Comm.
“Structured Channels”!

30



For optimal repair of (k+2, k) codes, we need T, full rank M x M
Vis M x M/2

span(T;V;) =span(V;),i # 7,1, =1,2,...,k
span(T;V;) Nspan(V;) = {0}

Solution 1: [Cadambe-Jafar-Maleki 10, Suh-Ramchandran 10]

e Choose T;,7=1,2...,k random diagonal

e Choose V,;,1 =1,2,...,k according to asymptotic alignment

Solution 2: Next



. _ T, full rank M x M
For optimal repair of (5,3) code Vis M x M/2

M =8

span(T2V1) = span(T3V) = span(V)
span(T1V1) Nspan(Vy) = {0}

span(T1Vsy) = span(T3Vsy) = span(Vs)
Span(TQVQ) a Span(Vz) — {O}

span(T;Vs) =span(T2V3) = span(V3)
span(T3V3) Nspan(Vs) = {0}
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a vector space, (multiple) transformations is a transformation .

Let B = {b1,b2} be a basis of (2 dimensional) vector space V

Then V ® )V ® V is a vector space with basis B x B x B

Then, extend by multi-Linearity (Key Property)
(au; 4+ fu) @veaw=a(u; ®vRw)+ fuy ® VR W)

etc.

Example:

(b1 —b2)®(b1+b2)®b1 = (b1 ®b1®b1)+ (b1 ®b2®b1) — (ba®b1 ®b1) — (b2 @b @b )



What are Tensor Pr&ducts?

Then, extend by multi-Linearity (Key Property)
(au; 4+ fu) @veaw=a(u; ®vRw)+ fuy ® VR W)

etc.
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Alignment properties of tensor products

Alignment of each factor of the product
ensures alignment of the product

span(V;) = span(U;) = span(V; ® Vo ® V3) = span(U; ® Uy ® Us)

“Non-alighment” of at least one factor of the product
ensures “non-alignment” of the product

span(V1) Nspan(U;) = {0}
= span (V1 ® Vo ® V3) Nspan (U; ® U, ® Uz) = {0}

Mixed Product Property

(HH H; @ H3)(V1® Vo ®V3) = (H;V; @ HyV, ® H3V;s)



H=—H; ® H, ® Hj
U=U;®U;® U;

Let



H=H; ® H, ® Hj
U=U; ®U;®Ug;

Let

U is H-invariant iff
U, 1s H; invariant and
U, is Hs invariant and
Uj is H3 invariant.

span(U) Nspan(HU) = {0} if
span(U;) Nspan(H,U;) = {0} or
span(Us) Nspan(HoUy) = {0} or
span(Us) Nspan(H3U3) = {0}
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_ _ T, full rank M x M
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M =8
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_ _ T, full rank M x M
For optimal repair of (5,3) code, Vis M x M/2

M =8
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1
V1:<O>®12®12
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_ _ T, full rank M x M
For optimal repair of (5,3) code, Vis M x M/2

M =38
span(T2V;) =span(T3V;) = span(V)
span(T1V;) Nspan(V;) = {0}

Invariance

Ts =1, ® 7 Q7

7 any full rank matrix

Distinguishability



0 1
T1=)\1(1 O)®12®12 Vlz((1)>®12®12

0 1
T2=>\212®<1 O>®12 V2212®<(1)>®12

1
T3:>\312®12®((1) (1)> VSZ:[Z@IQ@(O)

e Can use Ergodic Alignment matrices or other classes of matrices

e For (k+ 2,k) codes, use Tensor product of k£ two-dimensional spaces



Speculations? Musings? Open Problems?

e For DOF characterizations, no unified technique exists - even when re-
stricted to linear (beamforming) schemes. Are (superposition of ) Common
Invariant Subspaces fundamental structures?

— Note: Distributed Lattices aligning over different channel gains are
common invariant subgroups

e Distributed Storage: Is Asymptotics alignment necessary in general?

— For multiple node failures, connection to arbitrary subsets of surviv-
ing nodes....



Extra Slides
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