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Preliminary remarks

 Focus:
 Lossless distributed function computation in source networks

 Nodes connected by bidirectional rate-limited error-free bit-pipes

 Discrete Memoryless Stationary Sources

 New degree of freedom: multi-round interaction

 Disclaimers:
 No structured coding ensembles 

 No Gaussian Quadratic problem

 Some theory but no proofs

 Lots of simple but striking examples 
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 Co-located network with independent sources

 General multi-terminal problem: some observations
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Motivation
• Wireless sensor networks:

• Provide only information of interest, 

not the entire data

• Traditional data networks:

• Move data to destination

• Process data at destination

• Inefficient communication

• In-network computing:

• Distributed computing: process data 

as it moves

• Efficient communication

• Two-way communication 

(interaction) Where is the 

target ?
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Motivation
• Under what conditions is interaction useful?

• How useful is interaction?

• What is the best way to interact?

• At what time, who should send 

what message to whom?

Main Goal: 

Explore the benefit of interaction for 

distributed function computation in 

the framework of information theory



Related work
• Communication complexity (Yao, …, [Kushilevitz & Nisan])

• Two-way source coding [Kaspi’86]

• Coding for computing [Orlitsky & Roche’00]

There Here

Two terminals, two messages Multiple terminals, t messages

There Here

Source reproduction Function computation

No example to show interaction useful Many examples show interaction useful

There Here

Focus on Pr(comp.error) = 0 • Pr(comp.error) → 0 as #samples → ∞ 

• E [distortion] ≤ D

Bits Rate (bits per source sample)



Related work (continued 1)
• Scaling laws of max. rate of computation [Giridhar & Kumar’05]

• For divisible, type-sensitive, type-threshold function classes

• In random planar and collocated networks

• Communication complexity flavor   …  (Here: distributed block source coding flavor)

• Pr(compute. error) = 0   …   (Here: Pr(comput. error) → 0 as #samples → ∞, and 
also expected distortion criteria)

• Networks of finite max degree [Subramanian, Gupta, & Shakkottai’07]

• Further subdivision of type-sensitive function class

• If allow Pr(sample error) < e  then for some type-sensitive functions like AVERAGE, 
computation rate increases to type-threshold class

• Acyclic networks [Appuswami, Franceschetti, Karamchandani, & Zeger’07]

• No interaction over multiple rounds of communication

• Min-cut bound, tight for divisible functions in multi-edge tree networks

• Bound not tight in general



Related work (continued 2)
• CEO-style rate-distortion problem [Prabhakaran, Ramchandran,  & Tse’04] 

• Multiple rounds of communication

• Conditioned on desired (hidden) source, observations of agents are independent

• Lower bound on minimum sum-rate (for given distortion)

• Bound tight for jointly Gaussian sources and MSE

• Network coding [many refs. too long to list]

• Mainly non interactive, focus on data dissemination than function computation

• Gossip/Consensus algorithms [many refs]

• Single sample at each node (zero block-coding rate)

• Real-valued message exchanges (infinite # bits); With quantization: [Kashyap, 
Basar, & Srikant]

• Focus on rate of convergence

• Computation over noisy channels

• [Nazer & Gastpar]: for specialized classes of “matched” source-channel pairs

• [Gallager’88], [Ying,Srikant,&Dullerud’07], [Ayaso,Shah,&Dahleh’08]: single sample 
at each node (zero block-coding rate)



Related work (continued 3)
• Network communication problems with conferencing decoders

• Secrect key agreement problems with public discussion [U. Maurer et al., 
I.Csiszar, P.Narayanan et al.]

• Feedback problems

• Secure multi-party computation problems [large CS theory literature]

• …
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Example 1: Source reproduction

• Goal: only B reproduces

• No benefit in multiple messages

• If A also reprod. Y, at least two msgs. No benefit to use t > 2 msgs

• Caveat: interaction still beneficial if Pr(error) = 0 [Orlitsky, et al] or for 
faster rate of convergence and for nonergodic sources [Da-ke He, et al]

A B

(X1,…, Xn) (Y1,…,Yn)

(X1,…, Xn)

M1

R1 = H( X |Y )

Single msg (t =1)

R1 = H ( X | Y ) (Slepian-Wolf coding)

A B

(X1,…, Xn) (Y1,…,Yn)

M1

M2

…
Mt

(X1,…, Xn)

R’1

R’2

R’t

Multiple msgs (t ≥ 1)

R’1 +…+ R’t ≥  H ( fB(X, Y) |Y ) = H ( X |Y )

(X1; : : : ;Xn) : fB(x; y) = x; fA(x; y) = 0
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• Indep. sources: X ~ Uniform{1, 2, …, L}, Y ~ Bernoulli (p)

• Only B reproduces XY

A B

(X1,…, Xn) (Y1,…,Yn)

(X1Y1 ,…, XnYn)

M1

R1

Single msg: R1 = ?

fB (x, y) y = 0 y =1

x = 1 0 1

x = 2 0 2

… … …

x = L 0 L

Han & Kobayashi (1987):

If for any (x, y), pXY (x, y) > 0 and any 

two rows are different, then    

R1 ≥ H (X | Y ) no better than 

sending X completely!
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Example 2: Function computation

• Indep. sources: X ~ Uniform{1, 2, …, L}, Y ~ Bernoulli (p)

• Only B reproduces XY

• Even for indep. sources, interaction gain can be arbitrarily large

A B

(X1,…, Xn) (Y1,…,Yn)

M1

(X1Y1 ,…, XnYn)

R1 = H (X )

Single msg:

no better than sending X
[Han, Kobayashi, 1987]

(Y1,…,Yn)

A B

(X1,…, Xn)

(X1Y1 ,…, XnYn)

M1

R’1 = H (Y)

M2
R’2 = H( XY |Y )

1st msg: compress Y

2nd msg: send X only if Y = 1

R1 = log2 L strictly >             R’1 + R’2  = h2(p) + p log2 L



General two-terminal problem

• 2-component DMS source, 2 locations: 

• Samplewise function computation:

• t alternating messages

• In this talk, focus on:

Pr(comp. error) → 0 as n → ∞

• Can also handle coupled 

single-letter distortion

M1

M2

…

Mt

(Xi; Yi) » iid pXY

A B

(X1;X2; : : : ;Xn) (Y1; Y2; : : : ; Yn)



Two-terminal interaction

• Admissible rate-tuple (R1, …, Rt):

Exists a sequence of codes: 

as n → ∞

• Rate region       : 

set of admissible rate-tuples

M1

M2

…

Mt

A B

(X1;X2; : : : ;Xn) (Y1; Y2; : : : ; Yn)

Need:

R1

R2

Rt

(# bits msg j)=n! Rj; j = 1 : : : t

Pr[(fA 6= f̂A) or (fB 6= f̂B)]! 0

RA
t



Goals: 

1) Obtain a computable 

characterization of the rate 

region (limit-free and 

independent of n)

2) Understand the benefit of 

interaction for different 

sources and functions

Two-terminal interaction

M1

M2

…

Mt

A B

(X1;X2; : : : ;Xn) (Y1; Y2; : : : ; Yn)

Need:

R1

R2

Rt

M1



Information-theoretic rate region

RA
t = f (R1 : : : Rt) j 9 U t; s:t: jUij · gi(jX j; jYj);

Ri ¸
½

I(X;UijY;U i¡1); Ui ¡ (X;U i¡1)¡ Y; i odd

I(Y ;UijX;U i¡1); Ui ¡ (Y;U i¡1)¡X; i even

H(fA(X;Y )jX;U t) = 0; H(fB(X;Y )jY; U t) = 0 g

[Nan Ma & PI: ISIT’08, IT’11]



R < R ’

Wyner-Ziv coding

X
bits

U
Encoder Decoder

Y

• 2nR ’ codewords split into 2nR bins

• Encoder sends only bin-index => rate reduced 

from R’ to R but extra confusion for decoder

• Decoder uses Y to disambiguate entries in bin

• Encoding and decoding:  find statistically most

consistent codeword

• Notion of decoding failure

…

Bin # 1

Bin # 2

Bin # 2
n.R

2
nR’

C
o
d
e
w
o
r
d
s

block length n

U

R ’ ≥ I ( X ; U ) R ≥ I (X ; U | Y ), U - Y - X



A

X Y

B

Information-theoretic rate region

Achievability (sequence of Wyner-Ziv codes):

• 1st msg: Quantizes X to U1 with side info Y

• 2nd msg: Quantizes (Y ,U1) to U2 with side info (X ,U1)

………

• Recover fA based on (X, U1…Ut):

• Recover fB based on (Y, U1…Ut):

R1 U1U1
R2 U2U2
…

Rt UtUt

RA
t = f (R1 : : : Rt) j 9 U t; s:t: jUij · gi(jX j; jYj);

Ri ¸
½

I(X;UijY;U i¡1); Ui ¡ (X;U i¡1)¡ Y; i odd

I(Y ;UijX;U i¡1); Ui ¡ (Y;U i¡1)¡X; i even

H(fA(X;Y )jX;U t) = 0; H(fB(X;Y )jY; U t) = 0 g

f̂A f̂B

R1 = I(X;U1jY ); U1 ¡X ¡ Y

H(fAjX;U1 : : :Ut) = 0

H(fBjY;U1 : : : Ut) = 0



Information-theoretic rate region

Converse (impossible to do better):

• Standard information inequalities

• Auxiliary random variables 

• Cardinality bounds on alphabets of auxiliary random variables

RA
t = f (R1 : : : Rt) j 9 U t; s:t: jUij · gi(jX j; jYj);

Ri ¸
½

I(X;UijY;U i¡1); Ui ¡ (X;U i¡1)¡ Y; i odd

I(Y ;UijX;U i¡1); Ui ¡ (Y;U i¡1)¡X; i even

H(fA(X;Y )jX;U t) = 0; H(fB(X;Y )jY; U t) = 0 g

U1;i = (M1;X1; : : : ;Xi¡1; Yi+1; : : : ; Yn)

U2 =M2; : : : ; Ut =Mt



Minimum sum-rate
• t-msg min sum-rate:

aux. r. v. subject to

• Genie lower-bound:

fA(X,Y)

A B

X Y

fA(X,Y)A B

X Y

fA(X,Y) fB(X,Y)

RBA

RBA ≥ R’BA
R’BA

Rsum;t =minI(X;UtjY ) + I(Y ;UtjX)

Ui ¡ (X;U i¡1)¡ Y; i odd

Ui ¡ (Y; U i¡1)¡X; i even

H(fA(X;Y )jX;U t) = 0

H(fB(X; Y )jY; U t) = 0

Rsum;t ¸H(fA(X;Y )jX) +H(fB(X;Y )jY )

RBA ¸ R0BA ¸H(fA(X;Y )jX)



•

• Each message could be a null message

• For all finite t, Rsum,t computable; Rsum,∞ not.

• Recent result: a new functional characterization of Rsum,∞

• Opens new dimension of investigation: message asymptotics with 
infinitesimal rate messages

Minimum sum-rate
Rsum;1 ¸ Rsum;2 ¸ Rsum;3 ¸ : : : ¸ Rsum;1

A

X Y

B

f̂A f̂B



Example 3: Effect of Distribution

• Correlated binary sources: 

• Only B reprod. samplewise fB (X,Y)

• Even ∞-msg interaction is not better than one-msg. comm.

A B

X Y

M1

fB (X,Y)

R1

X Y

q 0

(1-q) 1

p

1-p

1-p

A B

X Y

M1

M2

…
Mt

fB (X,Y)

R’1

R’2

R’t

Theorem: for any function fB (x, y): 

min R1 =              min ( R’1 + … + R’t )

0

1



• Doubly symmetric binary sources (q = 1/2)

• Both sides reproduce X^Y (Boolean AND)

Example 4: Effect of Demand
0    ½

X Y

½   0

½   1 1    ½

p

1-p

1-p

2 msgs

A B

X Y

(X^Y)

M1

R1 = H(X | Y )

(X^Y)

M2

R2 = H( X^Y | X )



Example 4: Effect of Demand

• Doubly symmetric binary sources (q = 1/2)

• Both sides reproduce X^Y (Boolean AND)

3 msgs

A B

X Y

M1

M2

M3

(X^Y)

I (X ; U1 |Y )

(X^Y)

0    ½

X Y

½   0

½   1 1    ½

p

1-p

1-p

0

X U1

0

1 1

U2 = Y ^U1

U3 =X ^U2 =X ^Y

U1: part of zeros of X

U2: all of zeros of Y

U3: X^Y

I (Y; U2 |X , U1)

I (X ; U3 |Y , U2)



Example 4: Effect of Demand

• Doubly symmetric binary sources (q = 1/2)

• Both sides reproduce X^Y (Boolean AND)

• E.g, p = ½, X, Y ~ iid Ber (½), 2-msg: 1.5  vs  3-msg:  1.406

• 3 messages are better than 2 (interaction does help here)

3 msgs: strictly better than 2 msgs

A B

X Y

M1

M2

M3

(X^Y)(X^Y)

0    ½

X Y

½   0

½   1 1    ½

p

1-p

1-p

2 msgs

A B

X Y

M1

(X^Y)(X^Y)

M2

I (X ; U1 |Y )

I (Y; U2 |X , U1)

I (X ; U3 |Y , U2)

R1 = H(X | Y )

R2 = H( X^Y | X )



Example 5: ∞-msg interaction 

• Independent ( X , Y ),  X ~ Ber (p),  Y ~ Ber (q)

• Both sides reproduce X^Y

• ∞-msg minimum sum-rate: 

h2(p) + p h2 (q) + p log2 q + p (1-q) log2 e     (q > p)

A B

X Y

M1

M2

…
Mt

(X^Y)

R1

R2

Rt

(X^Y)

X Y

=1       =0, t =4

U4U4 X^Y

For p = q = ½, X, Y ~ iid Ber(½), 

∞-msg: 1.36 vs. 2-msg: 1.5 and 3-msg:  1.41
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Collocated network
• Consider:

• m sensors. Each observes n samples of a source

• A sink needs to compute a samplewise function

• A sequence of (noiseless) broadcasts for  r rounds

• How many bits/sample for each message? In total?

1

2

3

S

m = 3 in this example



Collocated network

• Sources: iid across samples ~         , independent across sensors

• Samplewise function:

• Broadcasting for r rounds, t = mr msgs: (1,…,m,   1,…,m,  …,  1,…,m)

• Pr(computation result vector ≠ correct function vector) → 0 as n → ∞

pXi

Z(i) = f(X1(i); : : : ;Xm(i)); i = 1; : : : ; n

m = 3 in this example

1

2

3

S



Collocated network

• Operational rate      (in bits/sample): ( # bits msg. i )               , as 

• Rate region        : set of all operational 

• Minimum sum-rate:

Ri =n! Ri n!1

Rr (R1;R2; : : : ;Rt)

m = 3 in this example

1

2

3

S



Collocated network

Goals:

• Obtain a computable characterization of        (independent of n)

• Scaling behavior of              w.r.t.  m (# sensors)

• Understand the benefit of interaction for different sources and functions

Rr

Rsum;r

m = 3 in this example

1

2

3

S



Information-theoretic rate region

Rr = f (R1 : : : Rt) j 9 U t; s:t: 8j 2 [1; t]; k = (j mod m);

Rj ¸ I(Xk;Uj jU j¡1);

Uj ¡ (U j¡1;Xk)¡ (Xk¡1;Xm
k+1);

H(f(Xm)jU t) = 0 g

A characterization independent of n : {1, 2 ,…, t }

[Nan Ma, PI, and P.Gupta: ISIT’09] 



Information-theoretic rate region

Achievability:
• 1st msg: Sensor-1 quantizes X1 to U1 and broadcasts U1

• 2nd msg: Sensor-2 quantizes X2 to U2 with side info U1 available to every node, 
and broadcasts U2 (conditional coding)

………

• Recover Z based on (U1…Ut):

R1 = I(X1;U1); U1 ¡X1 ¡Xm
2

R2 = I(X2;U2jU1); U2 ¡ (U1;X2)¡ (X1;X
m
3 )

H(f(Xm)jU1 : : : Ut) = 0

Rr = f (R1 : : : Rt) j 9 U t; s:t: 8j 2 [1; t]; k = (j mod m);

Rj ¸ I(Xk;Uj jU j¡1);

Uj ¡ (U j¡1;Xk)¡ (Xk¡1;Xm
k+1);

H(f(Xm)jU t) = 0 g



Information-theoretic rate region

Converse (impossible to do better):

• Standard information inequalities

• Auxiliary random variables

• Cardinality bounds on alphabets of auxiliary random variables

Rr = f (R1 : : : Rt) j 9 U t; s:t: 8j 2 [1; t]; k = (j mod m);

Rj ¸ I(Xk;Uj jU j¡1);

Uj ¡ (U j¡1;Xk)¡ (Xk¡1;Xm
k+1);

H(f(Xm)jU t) = 0 g

U1(i) = (M1;X1(1); : : : ;X1(i¡ 1); : : : ;Xm(1); : : : ;Xm(i¡ 1))

U2 =M2; : : : ; Ut =Mt



Minimum sum-rate

Minimum sum-rate:

aux. r.v. subject to

Rr = f (R1 : : : Rt) j 9 U t; s:t: 8j 2 [1; t]; k = (j mod m);

Rj ¸ I(Xk;Uj jU j¡1);

Uj ¡ (U j¡1;Xk)¡ (Xk¡1;Xm
k+1);

H(f(Xm)jU t) = 0 g

Rsum;r = min
Ut

I(Xm;U t)

8j 2 [1; t]; k = (j mod m);

Uj ¡ (U j¡1;Xk)¡ (Xk¡1;Xm
k+1);

H(f(Xm)jU t) = 0 g



Computing symmetric functions of 

binary sources
• Indep. Bernoulli sources:

• Symmetric functions: 

• Invariant to permutations of arguments

• Functions of for binary sources

• Maximal f’-monochromatic intervals:     { [a, b] }

• Computing f  Locating S in a union of max  f’-monochromatic intervals

e.g. f’(S) =       S in (2nd interval) U (4th interval)

Pr(Xi = 1) = pi 2 (0;1); Pr(Xi = 0) = 1¡ pi

S =
Pm

i=1Xi f(Xm) = f 0(S)

s

Color: function f ’

0 m



Computing symmetric functions of 

binary sources
Computing f  Locating S in a union of several max  f’-monochromatic intervals

e.g., f’(S) =       S in

Lemma 2(i):

Given U t, with probability one, there exists a single max  f’-monochromatic interval 

to which S belongs.

0 m

0 m 0 m

S in or S in

not required to distinguish between

However, due to the structure of the multiround code, 

can inevitably distinguish between these cases



Computing symmetric functions of 

binary sources
S in [a, b] existence of a 1’s and (m-b) 0’s in  X m

e.g., if  m = 5, then S in [2, 4]  at least two 1’s and one 0 in X 5

1       1                 0

X1 X2 X3 X4 X5

1 2 3 4 5

Not required to learn which 

X ’s are 1’s and which are 0’s

EXIST among



However, due to the structure of the 

multiround code, will inevitably learn  

a X ’s which are 1 and (m-b) X ’s  

which are 0.

Computing symmetric functions of 

binary sources
S in [a, b] existence of a 1’s and (m-b) 0’s in  X m

e.g., if  m = 5, then S in [2, 4]  at least two 1’s and one 0 in X 5

Lemma 2(ii):

Given U t, with probability one, can identify a X ’s which are 1 and (m-b) X ’s which 

are 0.

1       1                 0

X1 X2 X3 X4 X5

1 2 3 4 5



Computing symmetric functions of 

binary sources

Lemma 2: Given U t ,

(i)  S is in a single interval [a, b],

(ii) Can identify a X ’s which are 1 and 

(m-b) X ’s which are 0. 

Lemma for single-letter characterization

(holds with Prob = 1) 

Operational block-coding counterpart

(holds with Prob > 1 – Pr(blk. error) )

Lemma 3: Given any message 

sequence, for each sample i,

(i)   Sink can identify S(i) within a

single interval [ai, bi],

(ii)  Sink can identify ai sensors

observing 1 and (m-bi) 

sensors observing 0.



Example: PARITY

m max monochromatic intervals { [0, 0],  [1, 1],  … [m, m] }

For any zero-error code (Pr(blk. error) = 0), for each sample i:

1. Given the messages, the sink can identify S(i) within a single 

monochromatic interval  The sink knows S(i) exactly

2. If S(i) in [ai , ai], the sink knows that ai sensors observe 1’s and (m-ai) 

sensors observe 0’s  The sink has to learn all the sources, in 

order to compute their PARITY!

s

Color: function f ’

0 m



Other Implications
• Lemma 2 leads to a new lower bound for the minimum sum-rate

“Colocated Lower Bound”:

• For any symm fn of iid Ber(1/2) srcs,

• For any type-threshold function (e.g., MIN, MAX) of iid Ber(p) sources

(for zero-error computation                                    )

• “Colocated Lower Bounds” for Rsum,r could be order-wise better than 

cut-set bounds, e.g., for MIN, iid Ber(1/2), cut-set bound → 0 but new 

bound = Q(1) (tight-scaling)

• Implications for secure multi-party computation

Rsum;r(m) = £(1) Rsum;r(m) = £(logm)

Rsum;r ¸mh(p)¡
vmaxX

v=1;av 6=bv

(bv ¡ av)h
³
E(SjS2[av;bv])¡av

bv¡av

´
Pr(S 2 [av; bv])
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Multiterminal interaction

A

X

Y

B

C

ZfA(X, Y, Z)

fB(X, Y, Z)

fC(X, Y, Z)

• m-terminal problem: m sources, m samplewise functions

• message exchanges: t rounds

• each round: concurrent message transfers.

• can switch among many non-interactive configurations



Multiterminal interaction

A

X

Y

B

C

Z

Round 1

fC(X, Y, Z)

Round 2

A

X

Y

B

C

Z

Round 3

A

X

Y

B

C

ZfA(X, Y, Z)

fB(X, Y, Z)

• m-terminal problem: m sources, m samplewise functions

• message exchanges: t rounds

• each round: concurrent message transfers.

• can switch among many non-interactive configurations



Multiterminal interaction

• Complete rate region: # bits/sample in each link, each round

• Sum-rate region: # bits/sample in each link, sum over all rounds

• Region of admissible tuples ( RAB , RBA , RAC , RBC , RCA , RCB )

• Minimum sum-rate: min # bits/sample, sum over all links & all rounds

• Rsum= min RAB + RBA + RAC + RBC + RCA + RCB

• Does interaction help?

RAC

RCA

RBC

RCB

RBA

RAB

A

X

Y

B

C

ZfA(X, Y, Z)

fB(X, Y, Z)

fC(X, Y, Z)



• Simple cut-set bounds:

• RAB + RBA + RAC + RCA ≥ 2-term min sum-rate

• RAB + RAC ≥ H( fB(X, Y, Z ), fC (X, Y, Z) |Y, Z )

…

Goal: min (RAB + RBA + RAC + RBC + RCA + RCB ) s.t. 

a) all sum rate lower bounds for each cut: Linear program

b) rates consistent with rate-regions for each cut: Convex program

RAC

RCA

RBC

RCB

RBA

RAB

A

X

Y

B

C

ZfA(X, Y, Z)

fB(X, Y, Z)

fC(X, Y, Z)

Cut-set bounds

A

B

C

X
RAC

RCA

RBC

RCB

RBA

RAB

fA

Y
fB

Z
fC

A

B

C

X
RAC

RCA

RBC

RCB

RBA

RAB

fA

Y
fB

Z
fC



Example 1: interactive Körner-Marton
• Interactive communication allowing all possible links:

• RAB + RAC ≥ H( fC(X, Y ) |Y ) = h2(p)

A

B

C X XOR Y

X

Y

RAC

RCA

RBC

RCB

RBA

RAB

A

B

C X XOR Y

X

Y

RAC

RCA

RBC

RCB

RBA

RAB

A

B

C X XOR Y

X

Y

RAC

RCA

RBC

RCB

RBA

RAB

Rsum ≥ 2 h2(p)

RBA + RBC ≥ H( fC(X, Y ) | X ) = h2(p)

0 ½
X Y

½ 0

½ 1 1 ½

p

1-p

1-p



• Non-interactive Körner-Marton:

• ( X, Y ) ~ DSBS(p);  fC (x, y) = x XOR y

• Many-to-one scheme

• RAC = RBC = h2(p) by linear codes

• Rsum  = 2 h2(p)

• Relay scheme:

• RAB = H (X | Y ) = h2(p)

• RBC = H( fC(X, Y ) ) = h2(p)

• Rsum  = 2 h2(p)

A

B

C X XOR Y

X

Y

h2(p)

h2(p)

0 ½
X Y

½ 0

½ 1 1 ½

p

1-p

1-p

A

B

C X XOR Y

X

Y H ( X XOR Y )

H (X |Y )

Example 1: interactive Körner-Marton

May be possible to “bypass” 

difficult configurations



• Körner-Marton problem (interactive):

• ( X, Y ) ~ DSBS(p);  fC (x, y) = x AND y

• Many-to-one interactive scheme

• Rsum  ≥ h2(p) + h2(p)

• Min rate is unknown

• Relay scheme (noninteractive)

• RAB = H (X | Y ) = h2(p)

• RBC = H( X AND Y ) = h2(0.5(1-p))

• Rsum  = h2(p) + h2(0.5(1-p))

• < 2 h2(p) for p > 1/3

• Can compare configs. even if optimum

is unknown

Example 2: Körner-Marton “AND”

A

B

C X AND Y

X

Y

h2(p)

h2(p)

0 ½
X Y

½ 0

½ 1 1 ½

p

1-p

1-p

A

B

C X AND Y

X

Y H ( X AND Y )

H (X |Y )



• Xi ~ iid Ber(1/2), f (xm) = mini xi

• Noninteractive star network
• Cut-set bounds: by using [Han & Kobayashi]

Each rate ≥ 1 bit/sample

•

• Interactive star network

• 1→s: send X1: h2(1/2)

• s→2: send X1: h2(1/2)

• 2→s: send min{X1, X2}: h2(1/4)

• s→3: send min{X1, X2}: h2(1/4)

• ……

• Sum-rate = 2h2(1/2) + 2 h2(1/4) + 2 h2(1/8) + … <  7

• Using colocated lower bound:

• Interaction changes scaling law!

sink

mini Xi

X1 1

X2 2

……

Xm m

Example 3: Star networks

sink

mini Xi

X1 1

X2 2

……

Xm m

R1 = 1

R2 = 1 

Rm = 1



Concluding remarks
• General two-terminal problem:

• “completely solved”

• no benefit of interaction for data downloading; 

• benefit can be huge for computing non-trivial functions; 

• benefit depends on the structure of the functions and correlation

• new unexplored dimension: infinite, infinitesimal-rate messages

• Colocated networks:

• “completely solved” for independent sources

• comm. structure reveals more information than demanded

• cut-set bounds can be order-wise loose

• “colocated lower bounds” order-wise tight



Questions
• Is it possible to “bypass” open problems in multiterminal 

“non-interactive” source coding by enlarging the space of 

strategies to include interactive ones?

• Are structured codes needed for interactive source 

coding?

• What are the channel coding duals of interactive source 

coding?

• How do distortion structure, distribution structure, and 

network structure influence efficiency limits in interactive 

source coding problems? 



Thank you!

I found the 

target !


