Exploring Function and Distribution Structure in Interactive Computing Through Examples

Prakash Ishwar

Joint work with Nan Ma and Piyush Gupta

Preliminary remarks

- Focus:
- Lossless distributed function computation in source networks
- Nodes connected by bidirectional rate-limited error-free bit-pipes
- Discrete Memoryless Stationary Sources
- New degree of freedom: multi-round interaction
- Disclaimers:
- No structured coding ensembles
- No Gaussian Quadratic problem
- Some theory but no proofs
- Lots of simple but striking examples

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

Motivation

- Wireless sensor networks:

- Provide only information of interest, not the entire data

Where is the target?

Motivation

- Wireless sensor networks:
- Provide only information of interest, not the entire data
- Traditional data networks:

Motivation

- Wireless sensor networks:
- Provide only information of interest, not the entire data
- Traditional data networks:
- Move data to destination

Motivation

- Wireless sensor networks:
- Provide only information of interest, not the entire data
- Traditional data networks:
- Move data to destination
- Process data at destination

Motivation

- Wireless sensor networks:
- Provide only information of interest, not the entire data
- Traditional data networks:
- Move data to destination
- Process data at destination
- Inefficient communication

Motivation

- Wireless sensor networks:
- Provide only information of interest, not the entire data
- Traditional data networks:
- Move data to destination
- Process data at destination
- Inefficient communication
- In-network computing:
- Distributed computing: process data as it moves

Motivation

- Wireless sensor networks:
- Provide only information of interest, not the entire data
- Traditional data networks:
- Move data to destination
- Process data at destination
- Inefficient communication
- In-network computing:
- Distributed computing: process data as it moves
- Efficient communication

Motivation

- Wireless sensor networks:
- Provide only information of interest, not the entire data
- Traditional data networks:
- Move data to destination
- Process data at destination
- Inefficient communication
- In-network computing:
- Distributed computing: process data as it moves
- Efficient communication
- Two-way communication (interaction)

Motivation

- Is interaction useful?

Motivation

- Is interaction useful? Yes!

Motivation

- Is interaction useful? Yes!

Without interaction (one-way):
Inefficient communication

Motivation

- Is interaction useful? Yes!

Without interaction (one-way):
Inefficient communication

Motivation

- Is interaction useful? Yes!

Without interaction (one-way):
Inefficient communication

Motivation

- Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

With interaction (two-way):
Efficient communication

Motivation

- Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

With interaction (two-way):
Efficient communication

Motivation

- Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

With interaction (two-way):
Efficient communication

Motivation

- Under what conditions is interaction useful?

Motivation

- Under what conditions is interaction useful?
- How useful is interaction?

Motivation

- Under what conditions is interaction useful?
- How useful is interaction?
- What is the best way to interact?
- At what time, who should send what message to whom?

Motivation

- Under what conditions is interaction useful?
- How useful is interaction?
- What is the best way to interact?
- At what time, who should send what message to whom?

Main Goal:

Explore the benefit of interaction for distributed function computation in the framework of information theory

Related work

- Communication complexity (Yao, ..., [Kushilevitz \& Nisan])

There	Here
Focus on Pr (comp.error) $=0$	$-\operatorname{Pr}($ comp.error $) \rightarrow 0$ as \#samples $\rightarrow \infty$ $-E[$ distortion $] \leq D$
Bits	Rate (bits per source sample)

- Two-way source coding [Kaspi'86]

There	Here
Source reproduction	Function computation
No example to show interaction useful	Many examples show interaction useful

- Coding for computing [Orlitsky \& Roche'00]

There	Here
Two terminals, two messages	Multiple terminals, t messages

Related work (continued 1)

- Scaling laws of max. rate of computation [Giridhar \& Kumar’05]
- For divisible, type-sensitive, type-threshold function classes
- In random planar and collocated networks
- Communication complexity flavor ... (Here: distributed block source coding flavor)
- $\operatorname{Pr}($ compute. error $)=0 \ldots$ (Here: Pr (comput. error) $\rightarrow 0$ as \#samples $\rightarrow \infty$, and also expected distortion criteria)
- Networks of finite max degree [Subramanian, Gupta, \& Shakkottai'07]
- Further subdivision of type-sensitive function class
- If allow Pr (sample error) $<\varepsilon$ then for some type-sensitive functions like AVERAGE, computation rate increases to type-threshold class
- Acyclic networks [Appuswami, Franceschetti, Karamchandani, \& Zeger’07]
- No interaction over multiple rounds of communication
- Min-cut bound, tight for divisible functions in multi-edge tree networks
- Bound not tight in general

Related work (continued 2)

- CEO-style rate-distortion problem [Prabhakaran, Ramchandran, \& Tse'04]
- Multiple rounds of communication
- Conditioned on desired (hidden) source, observations of agents are independent
- Lower bound on minimum sum-rate (for given distortion)
- Bound tight for jointly Gaussian sources and MSE
- Network coding [many refs. too long to list]
- Mainly non interactive, focus on data dissemination than function computation
- Gossip/Consensus algorithms [many refs]
- Single sample at each node (zero block-coding rate)
- Real-valued message exchanges (infinite \# bits); With quantization: [Kashyap, Basar, \& Srikant]
- Focus on rate of convergence
- Computation over noisy channels
- [Nazer \& Gastpar]: for specialized classes of "matched" source-channel pairs
- [Gallager'88], [Ying,Srikant,\&Dullerud'07], [Ayaso,Shah,\&Dahleh'08]: single sample at each node (zero block-coding rate)

Related work (continued 3)

- Network communication problems with conferencing decoders
- Secrect key agreement problems with public discussion [U. Maurer et al., I.Csiszar, P.Narayanan et al.]
- Feedback problems
- Secure multi-party computation problems [large CS theory literature]

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

Example 1: Source reproduction

- Goal: only B reproduces $\left(X_{1}, \ldots, X_{n}\right): f_{B}(x, y)=x, f_{A}(x, y)=0$

Single msg ($t=1$)
$R_{1}=H(X \mid Y)$ (Slepian-Wolf coding)

$\left(X_{1}, \ldots, X_{n}\right)$
Multiple msgs $(t \geq 1)$

$$
R_{1}^{\prime}+\ldots+R_{t}^{\prime} \geq H\left(f_{B}(X, Y) \mid Y\right)=H(X \mid Y)
$$

- No benefit in multiple messages
- If A also reprod. Y, at least two msgs. No benefit to use $t>2 \mathrm{msgs}$
- Caveat: interaction still beneficial if $\mathrm{Pr}($ error $)=0$ [Orlitsky, et al] or for faster rate of convergence and for nonergodic sources [Da-ke He, et al]

Example 2: Function computation

- Indep. sources: $X \sim \operatorname{Uniform}\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

$f_{B}(x, y)$	$y=0$	$y=1$
$x=1$	0	1
$x=2$	0	2
\ldots	\cdots	\cdots
$x=L$	0	L

Example 2: Function computation

- Indep. sources: $X \sim$ Uniform $\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

$f_{B}(x, y)$	$y=0$	$y=1$
$x=1$	0	1
$x=2$	0	2
\ldots	\cdots	\cdots
$x=L$	0	L

Single msg: $R_{1}=$?

Example 2: Function computation

- Indep. sources: $X \sim$ Uniform $\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

Single msg: $R_{1}=$?

$f_{B}(x, y)$	$y=0$	$y=1$
$x=1$	0	1
$x=2$	0	2
\cdots	\cdots	\cdots
$x=L$	0	L

Han \& Kobayashi (1987):
If for any $(x, y), p_{X Y}(x, y)>0$ and any two rows are different, then
$R_{1} \geq H(X \mid Y)$ no better than sending \mathbf{X} completely!

Example 2: Function computation

- Indep. sources: $X \sim \operatorname{Uniform}\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

Single msg:
no better than sending \mathbf{X}
[Han, Kobayashi, 1987]

Example 2: Function computation

- Indep. sources: $X \sim$ Uniform $\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

Example 2: Function computation

- Indep. sources: $X \sim$ Uniform $\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

Single msg:
no better than sending \mathbf{X}
[Han, Kobayashi, 1987]

$1^{\text {st }} \mathrm{msg}$: compress \mathbf{Y}

Example 2: Function computation

- Indep. sources: $X \sim$ Uniform $\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

Single msg:
no better than sending \mathbf{X}
[Han, Kobayashi, 1987]

$1^{\text {st }} \mathrm{msg}$: compress \mathbf{Y}
$2^{\text {nd }} \mathrm{msg}$: send \mathbf{X} only if $Y=1$

Example 2: Function computation

- Indep. sources: $X \sim$ Uniform $\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

no better than sending \mathbf{X}
[Han, Kobayashi, 1987]

$$
R_{1}=\log _{2} L \quad \text { strictly }>
$$

$1^{\text {st }} \mathrm{msg}$: compress \mathbf{Y}
$2^{\text {nd }} \mathrm{msg}$: send \mathbf{X} only if $Y=1$
$R_{1}^{\prime}+R_{2}^{\prime}=h_{2}(p)+p \log _{2} L$

Example 2: Function computation

- Indep. sources: $X \sim$ Uniform $\{1,2, \ldots, L\}, Y \sim \operatorname{Bernoulli}(p)$
- Only B reproduces $X Y$

Single msg:
no better than sending \mathbf{X}
[Han, Kobayashi, 1987]

$$
R_{1}=\log _{2} L \quad \text { strictly }>
$$

A $\xrightarrow[R_{2}^{\prime}=H(X Y \mid Y)]{1} M$

$$
\left(X_{1} Y_{1}, \ldots, X_{n} Y_{n}\right)
$$

$1^{\text {st }} \mathrm{msg}$: compress \mathbf{Y}
$2^{\text {nd }} \mathrm{msg}$: send \mathbf{X} only if $Y=1$
$R_{1}^{\prime}+R_{2}^{\prime}=h_{2}(p)+p \log _{2} L$

- Even for indep. sources, interaction gain can be arbitrarily large

General two-terminal problem

- 2-component DMS source, 2 locations:

$$
\left(X_{i}, Y_{i}\right) \sim \operatorname{iid} p_{X Y}
$$

$\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

- Samplewise function computation:

$$
\begin{aligned}
& \mathbf{f}_{A}=\left(f_{A}\left(X_{1}, Y_{1}\right), \ldots, f_{A}\left(X_{n}, Y_{n}\right)\right) \\
& \mathbf{f}_{B}=\left(f_{B}\left(X_{1}, Y_{1}\right), \ldots, f_{B}\left(X_{n}, Y_{n}\right)\right)
\end{aligned}
$$

- t alternating messages
- In this talk, focus on:

$$
\operatorname{Pr}(\text { comp. error }) \rightarrow 0 \text { as } n \rightarrow \infty
$$

- Can also handle coupled

$$
\hat{\mathbf{f}}_{A}=\left(\hat{f}_{A, 1}, \ldots, \hat{f}_{A, n}\right)
$$

$$
\hat{\mathbf{f}}_{B}=\left(\hat{f}_{B, 1}, \ldots, \hat{f}_{B, n}\right)
$$ single-letter distortion

Two-terminal interaction

- Admissible rate-tuple $\left(R_{1}, \ldots, R_{t}\right)$:

Exists a sequence of codes:
as $n \rightarrow \infty$
$(\#$ bits $\mathrm{msg} j) / n \rightarrow R_{j}, j=1 \ldots t$ $\operatorname{Pr}\left[\left(\mathbf{f}_{A} \neq \hat{\mathbf{f}}_{A}\right)\right.$ or $\left.\left(\mathbf{f}_{B} \neq \hat{\mathbf{f}}_{B}\right)\right] \rightarrow 0$

- Rate region \mathcal{R}_{t}^{A} :
set of admissible rate-tuples

Need:

$$
\mathbf{f}_{A}=\left(f_{A}\left(X_{1}, Y_{1}\right), \ldots, f_{A}\left(X_{n}, Y_{n}\right)\right), \quad \mathbf{f}_{B}=\left(f_{B}\left(X_{1}, Y_{1}\right), \ldots, f_{B}\left(X_{n}, Y_{n}\right)\right)
$$

Two-terminal interaction

Goals:

1) Obtain a computable characterization of the rate region (limit-free and independent of n)
2) Understand the benefit of interaction for different sources and functions

$$
\hat{\mathbf{f}}_{A}=\left(\hat{f}_{A, 1}, \ldots, \hat{f}_{A, n}\right) \quad \hat{\mathbf{f}}_{B}=\left(\hat{f}_{B, 1}, \ldots, \hat{f}_{B, n}\right)
$$

Need:

$$
\mathbf{f}_{A}=\left(f_{A}\left(X_{1}, Y_{1}\right), \ldots, f_{A}\left(X_{n}, Y_{n}\right)\right), \quad \mathbf{f}_{B}=\left(f_{B}\left(X_{1}, Y_{1}\right), \ldots, f_{B}\left(X_{n}, Y_{n}\right)\right)
$$

Information-theoretic rate region

[Nan Ma \& PI: ISIT'08, IT' 11]

$$
\begin{aligned}
& \mathcal{R}_{t}^{A}=\left\{\left(R_{1} \ldots R_{t}\right) \mid \exists U^{t}, \text { s.t. }\left|\mathcal{U}_{i}\right| \cdot g_{i}(|\mathcal{X}|,|\mathcal{Y}|),\right. \\
& \quad R_{i} \geq \begin{cases}I\left(X ; U_{i} \mid Y, U^{i-1}\right), U_{i}-\left(X, U^{i-1}\right)-Y, & i \text { odd } \\
I\left(Y ; U_{i} \mid X, U^{i-1}\right), U_{i}-\left(Y, U^{i-1}\right)-X, & i \text { even }\end{cases} \\
& \left.\quad H\left(f_{A}(X, Y) \mid X, U^{t}\right)=0, H\left(f_{B}(X, Y) \mid Y, U^{t}\right)=0\right\}
\end{aligned}
$$

Wyner-Ziv coding

Information-theoretic rate region

$$
\begin{aligned}
& \mathcal{R}_{t}^{A}=\left\{\left(R_{1} \ldots R_{t}\right) \mid \exists U^{t}, \text { s.t. }\left|\mathcal{U}_{i}\right| \cdot g_{i}(|\mathcal{X}|,|\mathcal{Y}|),\right. \\
& \quad R_{i} \geq\left\{\begin{array}{cc}
I\left(X ; U_{i} \mid Y, U^{i-1}\right), U_{i}-\left(X, U^{i-1}\right)-Y, \quad i \text { odd } \\
I\left(Y ; U_{i} \mid X, U^{i-1}\right), U_{i}-\left(Y, U^{i-1}\right)-X, \quad i \text { even } \\
& \left.H\left(f_{A}(X, Y) \mid X, U^{t}\right)=0, H\left(f_{B}(X, Y) \mid Y, U^{t}\right)=0\right\}
\end{array}\right.
\end{aligned}
$$

Achievability (sequence of Wyner-Ziv codes):

- $1^{\text {st }} \mathrm{msg}$: Quantizes \mathbf{X} to \mathbf{U}_{1} with side info \mathbf{Y}

$$
R_{1}=I\left(X ; U_{1} \mid Y\right), \quad U_{1}-X-Y
$$

- $\quad 2^{\text {nd }} \mathrm{msg}:$ Quantizes $\left(\mathbf{Y}, \mathbf{U}_{1}\right)$ to \mathbf{U}_{2} with side info $\left(\mathbf{X}, \mathbf{U}_{1}\right)$

$$
R_{2}=I\left(Y ; U_{2} \mid X, U_{1}\right), \quad U_{2}-\left(Y, U_{1}\right)-X
$$

- Recover \mathbf{f}_{A} based on $\left(\mathbf{X}, \mathbf{U}_{1} \ldots \mathbf{U}_{t}\right): H\left(f_{A} \mid X, U_{1} \ldots U_{t}\right)=0$
- Recover \mathbf{f}_{B} based on $\left(\mathbf{Y}, \mathbf{U}_{1} \ldots \mathbf{U}_{t}\right): H\left(f_{B} \mid Y, U_{1} \ldots U_{t}\right)=0$

Information-theoretic rate region

$$
\begin{aligned}
& \mathcal{R}_{t}^{A}=\left\{\left(R_{1} \ldots R_{t}\right) \mid \exists U^{t}, \text { s.t. }\left|\mathcal{U}_{i}\right| \cdot g_{i}(|\mathcal{X}|,|\mathcal{Y}|),\right. \\
& \quad R_{i} \geq \begin{cases}I\left(X ; U_{i} \mid Y, U^{i-1}\right), U_{i}-\left(X, U^{i-1}\right)-Y, & i \text { odd } \\
I\left(Y ; U_{i} \mid X, U^{i-1}\right), U_{i}-\left(Y, U^{i-1}\right)-X, & i \text { even }\end{cases} \\
& \left.H\left(f_{A}(X, Y) \mid X, U^{t}\right)=0, H\left(f_{B}(X, Y) \mid Y, U^{t}\right)=0\right\}
\end{aligned}
$$

Converse (impossible to do better):

- Standard information inequalities
- Auxiliary random variables

$$
\begin{aligned}
& U_{1, i}=\left(M_{1}, X_{1}, \ldots, X_{i-1}, Y_{i+1}, \ldots, Y_{n}\right) \\
& U_{2}=M_{2}, \ldots, U_{t}=M_{t}
\end{aligned}
$$

- Cardinality bounds on alphabets of auxiliary random variables

Minimum sum-rate

- t-msg min sum-rate: $R_{\text {sum }, t}=\min I\left(X ; U^{t} \mid Y\right)+I\left(Y ; U^{t} \mid X\right)$

$$
\text { aux. r. v. subject to } \begin{aligned}
& U_{i}-\left(X, U^{i-1}\right)-Y, i \text { odd } \\
& U_{i}-\left(Y, U^{i-1}\right)-X, i \text { even } \\
& H\left(f_{A}(X, Y) \mid X, U^{t}\right)=0 \\
& H\left(f_{B}(X, Y) \mid Y, U^{t}\right)=0
\end{aligned}
$$

- Genie lower-bound: $\quad R_{\text {sum,t }} \geq H\left(f_{A}(X, Y) \mid X\right)+H\left(f_{B}(X, Y) \mid Y\right)$

Minimum sum-rate

- $R_{\text {sum }, 1} \geq R_{\text {sum }, 2} \geq R_{\text {sum }, 3} \geq \ldots \geq R_{\text {sum }, \infty}$
- Each message could be a null message

- For all finite $t, R_{\text {sum,t }}$ computable; $R_{\text {sum }, \infty}$ not.
- Recent result: a new functional characterization of $R_{\text {sum }, \infty}$
- Opens new dimension of investigation: message asymptotics with infinitesimal rate messages

Example 3: Effect of Distribution

- Correlated binary sources:
- Only B reprod. samplewise $f_{B}(\mathbf{X}, \mathbf{Y})$

Theorem: for any function $f_{B}(x, y)$:

$$
\min R_{1} \quad=\quad \min \left(R_{1}^{\prime}+\ldots+R_{t}^{\prime}\right)
$$

- Even $\infty-m s g$ interaction is not better than one-msg. comm.

Example 4: Effect of Demand

- Doubly symmetric binary sources $(q=1 / 2)$
- Both sides reproduce $\mathbf{X}^{\wedge} \mathbf{Y}$ (Boolean AND)

2 msgs

Example 4: Effect of Demand

- Doubly symmetric binary sources $(q=1 / 2)$
- Both sides reproduce $\mathbf{X}^{\wedge} \mathbf{Y}$ (Boolean AND)

3 msgs
\mathbf{U}_{1} : part of zeros of \mathbf{X}

\mathbf{U}_{2} : all of zeros of \mathbf{Y}

$$
U_{2}=Y \wedge U_{1}
$$

$$
\mathbf{U}_{3}: \mathbf{X}^{\wedge} \mathbf{Y}
$$

$$
U_{3}=X \wedge U_{2}=X \wedge Y
$$

Example 4: Effect of Demand

- Doubly symmetric binary sources $(q=1 / 2)$
- Both sides reproduce $\mathbf{X}^{\wedge} \mathbf{Y}$ (Boolean AND)

3 msgs: strictly better than 2 msgs

- E.g, $p=1 / 2, X, Y \sim \operatorname{iid} \operatorname{Ber}(1 / 2), 2-\mathrm{msg}: 1.5$ vs 3 -msg: 1.406
- 3 messages are better than 2 (interaction does help here)

Example 5: ∞-msg interaction

- Independent $(X, Y), X \sim \operatorname{Ber}(p), Y \sim \operatorname{Ber}(q)$
- Both sides reproduce $\mathbf{X}^{\wedge} \mathbf{Y}$
- $\quad \infty-m s g$ minimum sum-rate:

For $p=q=1 / 2, X, Y \sim \operatorname{iid} \operatorname{Ber}(1 / 2)$,
∞-msg: 1.36 vs. $2-\mathrm{msg}: 1.5$ and 3 -msg: 1.41

$(q>p)$

$\square=1 \quad \square=0, t=4$

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

Collocated network

- Consider:
- m sensors. Each observes n samples of a source
- A sink needs to compute a samplewise function
- A sequence of (noiseless) broadcasts for r rounds
- How many bits/sample for each message? In total?

Collocated network

- Sources: iid across samples $\sim p_{X_{i}}$, independent across sensors
- Samplewise function: $Z(i)=f\left(X_{1}(i), \ldots, X_{m}(i)\right), i=1, \ldots, n$
- Broadcasting for r rounds, $t=m r$ msgs: $(1, \ldots, m, 1, \ldots, m, \ldots, 1, \ldots, m)$
- $\operatorname{Pr}($ computation result vector \neq correct function vector $) \rightarrow 0$ as $n \rightarrow \infty$

Collocated network

- Operational rate R_{i} (in bits/sample): (\# bits msg. i) $/ n \rightarrow R_{i}$, as $n \rightarrow \infty$
- Rate region \mathcal{R}_{r} : set of all operational $\left(R_{1}, R_{2}, \ldots, R_{t}\right)$
- Minimum sum-rate: $R_{s u m, r}=\min \left(R_{1}+\ldots+R_{t}\right)$

Collocated network

Goals:

- Obtain a computable characterization of \mathcal{R}_{r} (independent of n)
- Scaling behavior of $R_{s u m, r}$ w.r.t. m (\# sensors)
- Understand the benefit of interaction for different sources and functions

Information-theoretic rate region

A characterization independent of n :

$$
\begin{aligned}
\mathcal{R}_{r}= & \left\{\left(R_{1} \ldots R_{t}\right) \mid \exists U^{t}, \text { s.t. } \forall j \in[1, t], k=(j \bmod m),\right. \\
& R_{j} \geq I\left(X_{k} ; U_{j} \mid U^{j-1}\right), \\
& U_{j}-\left(U^{j-1}, X_{k}\right)-\left(X^{k-1}, X_{k+1}^{m}\right), \\
& \left.H\left(f\left(X^{m}\right) \mid U^{t}\right)=0\right\}
\end{aligned}
$$

[Nan Ma, PI, and P.Gupta: ISIT'09]

Information-theoretic rate region

$$
\begin{aligned}
\mathcal{R}_{r}= & \left\{\left(R_{1} \ldots R_{t}\right) \mid \exists U^{t}, \text { s.t. } \forall j \in[1, t], k=(j \bmod m),\right. \\
& R_{j} \geq I\left(X_{k} ; U_{j} \mid U^{j-1}\right), \\
& U_{j}-\left(U^{j-1}, X_{k}\right)-\left(X^{k-1}, X_{k+1}^{m}\right), \\
& \left.H\left(f\left(X^{m}\right) \mid U^{t}\right)=0\right\}
\end{aligned}
$$

Achievability:

- $1^{\text {st }} \mathrm{msg}$: Sensor-1 quantizes \mathbf{X}_{1} to \mathbf{U}_{1} and broadcasts \mathbf{U}_{1}

$$
R_{1}=I\left(X_{1} ; U_{1}\right), \quad U_{1}-X_{1}-X_{2}^{m}
$$

- $2^{\text {nd }} \mathrm{msg}$: Sensor-2 quantizes \mathbf{X}_{2} to \mathbf{U}_{2} with side info \mathbf{U}_{1} available to every node, and broadcasts \mathbf{U}_{2} (conditional coding)

$$
R_{2}=I\left(X_{2} ; U_{2} \mid U_{1}\right), \quad U_{2}-\left(U_{1}, X_{2}\right)-\left(X_{1}, X_{3}^{m}\right)
$$

- Recover \mathbf{Z} based on $\left(\mathbf{U}_{1} \ldots \mathbf{U}_{t}\right): \quad H\left(f\left(X^{m}\right) \mid U_{1} \ldots U_{t}\right)=0$

Information-theoretic rate region

$$
\begin{aligned}
\mathcal{R}_{r}= & \left\{\left(R_{1} \ldots R_{t}\right) \mid \exists U^{t}, \text { s.t. } \forall j \in[1, t], k=(j \bmod m),\right. \\
& R_{j} \geq I\left(X_{k} ; U_{j} \mid U^{j-1}\right), \\
& U_{j}-\left(U^{j-1}, X_{k}\right)-\left(X^{k-1}, X_{k+1}^{m}\right), \\
& \left.H\left(f\left(X^{m}\right) \mid U^{t}\right)=0\right\}
\end{aligned}
$$

Converse (impossible to do better):

- Standard information inequalities
- Auxiliary random variables

$$
\begin{aligned}
& U_{1}(i)=\left(M_{1}, X_{1}(1), \ldots, X_{1}(i-1), \ldots, X_{m}(1), \ldots, X_{m}(i-1)\right) \\
& U_{2}=M_{2}, \ldots, U_{t}=M_{t}
\end{aligned}
$$

- Cardinality bounds on alphabets of auxiliary random variables

Minimum sum-rate

$$
\begin{aligned}
\mathcal{R}_{r}= & \left\{\left(R_{1} \ldots R_{t}\right) \mid \exists U^{t}, \text { s.t. } \forall j \in[1, t], k=(j \bmod m),\right. \\
& R_{j} \geq I\left(X_{k} ; U_{j} \mid U^{j-1}\right), \\
& \begin{array}{l}
U_{j}-\left(U^{j-1}, X_{k}\right)-\left(X^{k-1}, X_{k+1}^{m}\right), \\
\left.H\left(f\left(X^{m}\right) \mid U^{t}\right)=0\right\}
\end{array}
\end{aligned}
$$

Minimum sum-rate:

$$
R_{\text {sum }, r}=\min _{U^{t}} I\left(X^{m} ; U^{t}\right)
$$

aux. r.v. subject to

$$
\begin{aligned}
& \forall j \in[1, t], k=(j \bmod m), \\
& U_{j}-\left(U^{j-1}, X_{k}\right)-\left(X^{k-1}, X_{k+1}^{m}\right), \\
& \left.H\left(f\left(X^{m}\right) \mid U^{t}\right)=0\right\}
\end{aligned}
$$

Computing symmetric functions of binary sources

- Indep. Bernoulli sources: $\operatorname{Pr}\left(X_{i}=1\right)=p_{i} \in(0,1), \operatorname{Pr}\left(X_{i}=0\right)=1-p_{i}$
- Symmetric functions:
- Invariant to permutations of arguments
- Functions of $S=\sum_{i=1}^{m} X_{i}$ for binary sources $f\left(X^{m}\right)=f^{\prime}(S)$
- Maximal f^{\prime}-monochromatic intervals: $\{[a, b]\}$
- Computing $f \Leftrightarrow$ Locating S in a union of $\max f^{\prime}$-monochromatic intervals e.g. $f^{\prime}(S)=\square \Leftrightarrow S$ in (2 nd interval) \cup (4 $4^{\text {th }}$ interval)

Computing symmetric functions of binary sources

Computing $f \Leftrightarrow$ Locating S in a union of several max f^{\prime}-monochromatic intervals

Lemma 2(i):

Given U^{t}, with probability one, there exists a single max f^{\prime}-monochromatic interval to which S belongs.

Computing symmetric functions of binary sources

S in $[a, b] \Leftrightarrow$ existence of $a 1$'s and ($m-b$) 0's in X^{m}
e.g., if $m=5$, then S in $[2,4] \Leftrightarrow$ at least two 1 's and one 0 in X^{5}

1	1	0

Not required to learn which X 's are 1's and which are 0's

Computing symmetric functions of binary sources

S in $[a, b] \Leftrightarrow$ existence of $a 1$'s and ($m-b$) 0's in X^{m}
e.g., if $m=5$, then S in $[2,4] \Leftrightarrow$ at least two 1 's and one 0 in X^{5}

However, due to the structure of the multiround code, will inevitably learn $a X$'s which are 1 and $(m-b) X$'s which are 0.

Lemma 2(ii):

Given U^{t}, with probability one, can identify a X 's which are 1 and ($m-b$) X 's which are 0 .

Computing symmetric functions of binary sources

Lemma for single-letter characterization (holds with Prob = 1)

Operational block-coding counterpart
(holds with Prob $>1-\operatorname{Pr}($ blk. error))

Lemma 3: Given any message sequence, for each sample i,
(i) Sink can identify $S(i)$ within a single interval $\left[a_{i}, b_{i}\right]$,
(ii) Sink can identify a_{i} sensors observing 1 and ($m-b_{i}$) sensors observing 0 .

Example: PARITY

m max monochromatic intervals $\{[0,0],[1,1], \ldots[m, m]\}$
Color: function f^{\prime}

For any zero-error code $(\operatorname{Pr}($ blk. error $)=0)$, for each sample i :

1. Given the messages, the sink can identify $S(i)$ within a single monochromatic interval \Leftrightarrow The sink knows $S(i)$ exactly
2. If $S(i)$ in $\left[a_{i}, a_{i}\right]$, the sink knows that a_{i} sensors observe 1's and ($m-a_{i}$) sensors observe 0's \Leftrightarrow The sink has to learn all the sources, in order to compute their PARITY!

Other Implications

- Lemma 2 leads to a new lower bound for the minimum sum-rate "Colocated Lower Bound":

$$
R_{\text {sum }, r} \geq m h(p)-\sum_{v=1, a_{v} \neq b_{v}}^{v_{\text {max }}}\left(b_{v}-a_{v}\right) h\left(\frac{E\left(S \mid S \in\left[a_{v}, b_{v}\right]\right)-a_{v}}{b_{v}-a_{v}}\right) \operatorname{Pr}\left(S \in\left[a_{v}, b_{v}\right]\right)
$$

- For any symm fn of iid $\operatorname{Ber}(1 / 2)$ srcs, $\quad \frac{1}{2} R_{\text {sum }, 1} \leq R_{\text {sum }, r} \leq R_{\text {sum }, 1}$
- For any type-threshold function (e.g., MIN, MAX) of iid $\operatorname{Ber}(p)$ sources $R_{\text {sum }, r}(m)=\Theta(1)$ (for zero-error computation $R_{\text {sum }, r}(m)=\Theta(\log m)$)
- "Colocated Lower Bounds" for $R_{\text {sum,r }}$ could be order-wise better than cut-set bounds, e.g., for MIN, iid $\operatorname{Ber}(1 / 2)$, cut-set bound $\rightarrow 0$ but new bound $=\Theta(1)$ (tight-scaling)
- Implications for secure multi-party computation

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

Multiterminal interaction

- m-terminal problem: m sources, m samplewise functions
- message exchanges: t rounds
- each round: concurrent message transfers.
- can switch among many non-interactive configurations

$$
f_{B}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \longleftarrow \frac{\square}{\uparrow}
$$

Multiterminal interaction

- m-terminal problem: m sources, m samplewise functions
- message exchanges: t rounds
- each round: concurrent message transfers.
- can switch among many non-interactive configurations

Round 1

Round 3

Multiterminal interaction

- Complete rate region: \# bits/sample in each link, each round
- Sum-rate region: \# bits/sample in each link, sum over all rounds
- Region of admissible tuples ($R_{A B}, R_{B A}, R_{A C}, R_{B C}, R_{C A}, R_{C B}$)
- Minimum sum-rate: min \# bits/sample, sum over all links \& all rounds
- $R_{\text {sum }}=\min R_{A B}+R_{B A}+R_{A C}+R_{B C}+R_{C A}+R_{C B}$
- Does interaction help?

Cut-set bounds

- Simple cut-set bounds:
- $R_{A B}+R_{B A}+R_{A C}+R_{C A} \geq$ 2-term min sum-rate
- $R_{A B}+R_{A C} \geq H\left(f_{B}(X, Y, Z), f_{C}(X, Y, Z) \mid Y, Z\right)$

Goal: $\min \left(R_{A B}+R_{B A}+R_{A C}+R_{B C}+R_{C A}+R_{C B}\right)$ s.t.

a) all sum rate lower bounds for each cut: Linear program
b) rates consistent with rate-regions for each cut: Convex program

Example 1: interactive Körner-Marton

- Interactive communication allowing all possible links:

- $R_{A B}+R_{A C} \geq H\left(f_{C}(X, Y) \mid Y\right)=h_{2}(p) \quad R_{B A}+R_{B C} \geq H\left(f_{C}(X, Y) \mid X\right)=h_{2}(p)$

Example 1: interactive Körner-Marton

- Non-interactive Körner-Marton:
- $(X, Y) \sim \operatorname{DSBS}(p) ; f_{C}(x, y)=x$ xor y
- Many-to-one scheme
- $R_{A C}=R_{B C}=h_{2}(p)$ by linear codes
- $R_{\text {sum }}=2 h_{2}(p)$
- Relay scheme:
- $R_{A B}=H(X \mid Y)=h_{2}(p)$
- $R_{B C}=H\left(f_{C}(X, Y)\right)=h_{2}(p)$
- $R_{\text {sum }}=2 h_{2}(p)$

May be possible to "bypass" difficult configurations

Example 2: Körner-Marton "AND"

- Körner-Marton problem (interactive):
- $(X, Y) \sim \operatorname{DSBS}(p) ; f_{C}(x, y)=x$ and y
- Many-to-one interactive scheme
- $R_{\text {sum }} \geq h_{2}(p)+h_{2}(p)$
- Min rate is unknown
- Relay scheme (noninteractive)
- $R_{A B}=H(X \mid Y)=h_{2}(p)$
- $R_{B C}=H(X$ AND $Y)=h_{2}(0.5(1-p))$
- $R_{\text {sum }}=h_{2}(p)+h_{2}(0.5(1-p))$
- < $2 h_{2}(p)$ for $p>1 / 3$
- Can compare configs. even if optimum is unknown

Example 3: Star networks

- $X_{i} \sim \operatorname{iid} \operatorname{Ber}(1 / 2), f\left(x^{m}\right)=\min _{i} x_{i}$
- Noninteractive star network
- Cut-set bounds: by using [Han \& Kobayashi] Each rate ≥ 1 bit/sample
- $R_{\text {sum }}(m)=m$
- Interactive star network

- $1 \rightarrow \mathrm{~s}$: send $\mathbf{X}_{1}: h_{2}(1 / 2)$
- $\mathrm{s} \rightarrow 2$: send $\mathbf{X}_{1}: h_{2}(1 / 2)$
- $2 \rightarrow$ s: send $\min \left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\}: h_{2}(1 / 4)$
- $\mathrm{s} \rightarrow$: send $\min \left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\}: h_{2}(1 / 4)$
- Sum-rate $=2 h_{2}(1 / 2)+2 h_{2}(1 / 4)+2 h_{2}(1 / 8)+\ldots<7$

Concluding remarks

- General two-terminal problem:
- "completely solved"
- no benefit of interaction for data downloading;
- benefit can be huge for computing non-trivial functions;
- benefit depends on the structure of the functions and correlation
- new unexplored dimension: infinite, infinitesimal-rate messages
- Colocated networks:
- "completely solved" for independent sources
- comm. structure reveals more information than demanded
- cut-set bounds can be order-wise loose
- "colocated lower bounds" order-wise tight

Questions

- Is it possible to "bypass" open problems in multiterminal "non-interactive" source coding by enlarging the space of strategies to include interactive ones?
- Are structured codes needed for interactive source coding?
- What are the channel coding duals of interactive source coding?
- How do distortion structure, distribution structure, and network structure influence efficiency limits in interactive source coding problems?

Thank you!

