Exploring Function and Distribution Structure in Interactive Computing Through Examples

Prakash Ishwar

Joint work with Nan Ma and Piyush Gupta

Preliminary remarks

- Focus:
 - Lossless distributed function computation in source networks
 - Nodes connected by bidirectional rate-limited error-free bit-pipes
 - Discrete Memoryless Stationary Sources
- New degree of freedom: multi-round interaction

Disclaimers:

- No structured coding ensembles
- No Gaussian Quadratic problem
- Some theory but no proofs
- Lots of simple but striking examples

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

- Wireless sensor networks:
 - Provide only information of interest, not the entire data

- Wireless sensor networks:
 - Provide only information of interest, not the entire data
- Traditional data networks:

- Wireless sensor networks:
 - Provide only information of interest, not the entire data
- Traditional data networks:
 - Move data to destination

- Wireless sensor networks:
 - Provide only information of interest, and the entire data
- Traditional data networks:
 - Move data to destination
 - Process data at destination

- Wireless sensor networks:
 - Provide only information of interest, not the entire data
- Traditional data networks:
 - Move data to destination
 - Process data at destination
 - Inefficient communication

- Wireless sensor networks:
 - Provide only information of interest, and the entire data
- Traditional data networks:
 - Move data to destination
 - Process data at destination
 - Inefficient communication
- In-network computing:
 - Distributed computing: process data as it moves

- Wireless sensor networks:
 - Provide only information of interest, not the entire data
- Traditional data networks:
 - Move data to destination
 - Process data at destination
 - Inefficient communication
- In-network computing:
 - Distributed computing: process data as it moves
 - Efficient communication

- Wireless sensor networks:
 - Provide only information of interest, and the entire data
- Traditional data networks:
 - Move data to destination
 - Process data at destination
 - Inefficient communication
- In-network computing:
 - Distributed computing: process data as it moves
 - Efficient communication
 - Two-way communication (interaction)

• Is interaction useful?

• Is interaction useful? Yes!

• Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

• Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

• Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

• Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

With interaction (two-way): Efficient communication

• Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

With interaction (two-way): Efficient communication

• Is interaction useful? Yes!

Without interaction (one-way): Inefficient communication

With interaction (two-way): Efficient communication

• Under what conditions is interaction useful?

- Under what conditions is interaction useful?
- How useful is interaction?

- Under what conditions is interaction useful?
- How useful is interaction?
- What is the best way to interact?
 - At *what time*, *who* should send *what* message to *whom*?

- Under what conditions is interaction useful?
- How useful is interaction?
- What is the best way to interact?
 - At *what time*, *who* should send *what* message to *whom*?

Main Goal:

Explore the benefit of *interaction* for distributed *function computation* in the framework of information theory

Related work

• Communication complexity (Yao, ..., [Kushilevitz & Nisan])

There	Here
Focus on Pr(comp.error) = 0	 Pr(comp.error) → 0 as #samples → ∞ E [distortion] ≤ D
Bits	Rate (bits per source sample)

• Two-way source coding [Kaspi'86]

There	Here
Source reproduction	Function computation
No example to show interaction useful	Many examples show interaction useful

• Coding for computing [Orlitsky & Roche'00]

There	Here
Two terminals, two messages	Multiple terminals, t messages

Related work (continued 1)

- Scaling laws of max. rate of computation [Giridhar & Kumar'05]
 - For divisible, type-sensitive, type-threshold function classes
 - In random planar and collocated networks
 - Communication complexity flavor ... (Here: distributed block source coding flavor)
 - Pr(compute. error) = 0 ... (Here: Pr(comput. error) → 0 as #samples → ∞, and also expected distortion criteria)
- Networks of finite max degree [Subramanian, Gupta, & Shakkottai'07]
 - Further subdivision of type-sensitive function class
 - If allow Pr(sample error) < ε then for some type-sensitive functions like AVERAGE, computation rate increases to type-threshold class
- Acyclic networks [Appuswami, Franceschetti, Karamchandani, & Zeger'07]
 - No interaction over multiple rounds of communication
 - Min-cut bound, tight for divisible functions in multi-edge tree networks
 - Bound not tight in general

Related work (continued 2)

- CEO-style rate-distortion problem [Prabhakaran, Ramchandran, & Tse'04]
 - Multiple rounds of communication
 - Conditioned on desired (hidden) source, observations of agents are independent
 - Lower bound on minimum sum-rate (for given distortion)
 - Bound tight for jointly Gaussian sources and MSE
- Network coding [many refs. too long to list]
 - Mainly non interactive, focus on data dissemination than function computation
- Gossip/Consensus algorithms [many refs]
 - Single sample at each node (zero block-coding rate)
 - Real-valued message exchanges (infinite # bits); With quantization: [Kashyap, Basar, & Srikant]
 - Focus on rate of convergence
- Computation over noisy channels
 - [Nazer & Gastpar]: for specialized classes of "matched" source-channel pairs
 - [Gallager'88], [Ying,Srikant,&Dullerud'07], [Ayaso,Shah,&Dahleh'08]: single sample at each node (zero block-coding rate)

Related work (continued 3)

- Network communication problems with conferencing decoders
- Secrect key agreement problems with public discussion [U. Maurer et al., I.Csiszar, P.Narayanan et al.]
- Feedback problems
- Secure multi-party computation problems [large CS theory literature]

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

Example 1: Source reproduction

• <u>Goal</u>: only B reproduces (X_1, \ldots, X_n) : $f_B(x, y) = x$, $f_A(x, y) = 0$

- No benefit in multiple messages
- If A also reprod. Y, at least two msgs. No benefit to use t > 2 msgs
- <u>Caveat</u>: interaction still beneficial if <u>Pr(error) = 0</u> [Orlitsky, et al] or for faster rate of convergence and for <u>nonergodic</u> sources [Da-ke He, et al]

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

$f_B(x, y)$	y = 0	y =1
<i>x</i> = 1	0	1
<i>x</i> = 2	0	2
	•••	
x = L	0	L

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

$f_B(x, y)$	y = 0	y =1
<i>x</i> = 1	0	1
<i>x</i> = 2	0	2
	•••	•••
x = L	0	L

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

$f_B(x, y)$	y = 0	y =1
x = 1	0	1
<i>x</i> = 2	0	2
•••	•••	
x = L	0	L

Han & Kobayashi (1987):

If for any (x, y), $p_{XY}(x, y) > 0$ and any two rows are different, then

 $R_1 \ge H(X | Y)$ no better than sending **X** completely!

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

Example 2: Function computation

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

Example 2: Function computation

- Indep. sources: $X \sim \text{Uniform}\{1, 2, ..., L\}, Y \sim \text{Bernoulli}(p)$
- Only B reproduces XY

• Even for indep. sources, interaction gain can be arbitrarily large

General two-terminal problem

- 2-component DMS source, 2 locations:
 - $(X_i, Y_i) \sim \text{iid } p_{XY}$ (X_1, X_2, \dots, X_n)
- Samplewise function computation:

$$\mathbf{f}_A = (f_A(X_1, Y_1), \dots, f_A(X_n, Y_n))$$

- $\mathbf{f}_B = (f_B(X_1, Y_1), \dots, f_B(X_n, Y_n))$
- *t* alternating messages
- In this talk, focus on:
 Pr(comp. error) → 0 as n → ∞

Can also handle coupled single-letter distortion

Two-terminal interaction

Two-terminal interaction

Goals:

1) Obtain a computable characterization of the rate region (limit-free and independent of *n*)

2) Understand the benefit of interaction for different sources and functions

Need:

 M_1

[Nan Ma & PI: ISIT'08, IT'11]

$$\begin{aligned} \mathcal{R}_{t}^{A} &= \{ (R_{1} \dots R_{t}) \mid \exists \ U^{t}, s.t. \ |\mathcal{U}_{i}| \cdot g_{i}(|\mathcal{X}|, |\mathcal{Y}|), \\ R_{i} &\geq \begin{cases} I(X; U_{i}|Y, U^{i-1}), \ U_{i} - (X, U^{i-1}) - Y, & i \text{ odd} \\ I(Y; U_{i}|X, U^{i-1}), \ U_{i} - (Y, U^{i-1}) - X, & i \text{ even} \end{cases} \\ H(f_{A}(X, Y)|X, U^{t}) &= 0, \ H(f_{B}(X, Y)|Y, U^{t}) = 0 \end{cases} \end{aligned}$$

 $R' \ge I(X; U)$ $R \ge I(X; U/Y), U - Y - X$

- $2^{nR'}$ codewords split into 2^{nR} bins
- Encoder sends only bin-index => rate reduced from R' to R but extra confusion for decoder
- Decoder uses Y to disambiguate entries in bin
- Encoding and decoding: find statistically most consistent codeword
- Notion of decoding failure

$$\begin{aligned} \mathcal{R}_{t}^{A} &= \{ (R_{1} \dots R_{t}) \mid \exists \ U^{t}, s.t. \ |\mathcal{U}_{i}| \cdot g_{i}(|\mathcal{X}|, |\mathcal{Y}|), \\ R_{i} &\geq \begin{cases} I(X; U_{i}|Y, U^{i-1}), \ U_{i} - (X, U^{i-1}) - Y, & i \text{ odd} \\ I(Y; U_{i}|X, U^{i-1}), \ U_{i} - (Y, U^{i-1}) - X, & i \text{ even} \end{cases} \\ H(f_{A}(X, Y)|X, U^{t}) &= 0, \ H(f_{B}(X, Y)|Y, U^{t}) = 0 \end{cases} \end{aligned}$$

Achievability (sequence of Wyner-Ziv codes):

- 1st msg: Quantizes X to U₁ with side info Y $R_1 = I(X; U_1|Y), \quad U_1 - X - Y$
- 2nd msg: Quantizes (Y,U₁) to U₂ with side info (X,U₁) $R_2 = I(Y;U_2|X,U_1), \quad U_2 - (Y,U_1) - X$
- Recover \mathbf{f}_A based on $(\mathbf{X}, \mathbf{U}_1 \dots \mathbf{U}_t)$: $H(f_A | X, U_1 \dots U_t) = 0$
- Recover \mathbf{f}_B based on $(\mathbf{Y}, \mathbf{U}_1 \dots \mathbf{U}_t)$: $H(f_B | Y, U_1 \dots U_t) = 0$

$$\mathcal{R}_{t}^{A} = \{ (R_{1} \dots R_{t}) \mid \exists U^{t}, s.t. \mid \mathcal{U}_{i} \mid \cdot g_{i}(|\mathcal{X}|, |\mathcal{Y}|), \\ R_{i} \geq \begin{cases} I(X; U_{i} \mid Y, U^{i-1}), \ U_{i} - (X, U^{i-1}) - Y, & i \text{ odd} \\ I(Y; U_{i} \mid X, U^{i-1}), \ U_{i} - (Y, U^{i-1}) - X, & i \text{ even} \end{cases} \\ H(f_{A}(X, Y) \mid X, U^{t}) = 0, \ H(f_{B}(X, Y) \mid Y, U^{t}) = 0 \} \end{cases}$$

Converse (impossible to do better):

- Standard information inequalities
- Auxiliary random variables

$$U_{1,i} = (M_1, X_1, \dots, X_{i-1}, Y_{i+1}, \dots, Y_n)$$

$$U_2 = M_2, \dots, U_t = M_t$$

• Cardinality bounds on alphabets of auxiliary random variables

Minimum sum-rate

• *t*-msg min sum-rate: $R_{sum,t} = \min I(X; U^t|Y) + I(Y; U^t|X)$

aux. r. v. subject to

$$U_i - (X, U^{i-1}) - Y, i \text{ odd}$$
$$U_i - (Y, U^{i-1}) - X, i \text{ even}$$
$$H(f_A(X, Y) | X, U^t) = 0$$
$$H(f_B(X, Y) | Y, U^t) = 0$$

• <u>Genie lower-bound:</u> $R_{sum,t} \ge H(f_A(X,Y)|X) + H(f_B(X,Y)|Y)$

Minimum sum-rate

- $R_{sum,1} \ge R_{sum,2} \ge R_{sum,3} \ge \ldots \ge R_{sum,\infty}$
 - Each message could be a null message

- For all finite t, $R_{sum,t}$ computable; $R_{sum,\infty}$ not.
- <u>Recent result</u>: a new functional characterization of $R_{sum,\infty}$
- <u>Opens new dimension of investigation</u>: message asymptotics with infinitesimal rate messages

Example 3: Effect of Distribution

- Correlated binary sources:
- Only B reprod. samplewise $f_B(\mathbf{X}, \mathbf{Y})$

• Even ∞-msg interaction is not better than one-msg. comm.

Example 4: Effect of Demand

- Doubly symmetric binary sources (q = 1/2)
- Both sides reproduce X^Y (Boolean AND)

Example 4: Effect of Demand

- Doubly symmetric binary sources (q = 1/2)
- Both sides reproduce X^Y (Boolean AND)

 \mathbf{U}_1 : part of zeros of \mathbf{X}

 $\mathbf{U}_2\!\!:$ all of zeros of \mathbf{Y}

$$U_2 = Y \wedge U_1$$

 \mathbf{U}_3 : X^Y $U_3 = X \wedge U_2 = X \wedge Y$

Example 4: Effect of Demand

- Doubly symmetric binary sources (q = 1/2)
- Both sides reproduce X^Y (Boolean AND)

3 msgs: strictly better than 2 msgs

- E.g, $p = \frac{1}{2}$, X, Y ~ iid Ber ($\frac{1}{2}$), 2-msg: 1.5 vs 3-msg: 1.406
- <u>3 messages are better than 2 (interaction does help here)</u>

Example 5: ∞-msg interaction

- Independent $(X, Y), X \sim Ber(p), Y \sim Ber(q)$
- Both sides reproduce X^Y
- ∞-msg minimum sum-rate:

For $p = q = \frac{1}{2}$, X, $Y \sim \text{iid Ber}(\frac{1}{2})$, ∞ -msg: 1.36 vs. 2-msg: 1.5 and 3-msg: 1.41

 $h_2(p) + p h_2(q) + p \log_2 q + p (1-q) \log_2 e \quad (q > p)$

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

- Consider:
 - *m* sensors. Each observes *n* samples of a source
 - A sink needs to compute a samplewise function
 - A sequence of (noiseless) broadcasts for r rounds
 - How many bits/sample for each message? In total?

$$(X_{1}(1), \dots, X_{1}(n)) \longrightarrow 1$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(n) = f(X_{1}(n), X_{2}(n), X_{3}(n))$$

$$(X_{3}(1), \dots, X_{3}(n)) \longrightarrow 3$$

$$m = 3 \text{ in this example}$$

- Sources: iid across samples ~ p_{X_i} , independent across sensors
- Samplewise function: $Z(i) = f(X_1(i), \dots, X_m(i)), i = 1, \dots, n$
- Broadcasting for r rounds, t = mr msgs: $(1, \dots, m, 1, \dots, m, \dots, 1, \dots, m)$
- Pr(computation result vector \neq correct function vector) \rightarrow 0 as $n \rightarrow \infty$

$$(X_{1}(1), \dots, X_{1}(n)) \longrightarrow 1$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(n) = f(X_{1}(n), X_{2}(n), X_{3}(n))$$

$$(X_{3}(1), \dots, X_{3}(n)) \longrightarrow 3$$

$$m = 3 \text{ in this example}$$

- Operational rate R_i (in bits/sample): (# bits msg. i)/ $n \to R_i$, as $n \to \infty$
- Rate region \mathcal{R}_r : set of all operational (R_1, R_2, \ldots, R_t)
- Minimum sum-rate: $R_{sum,r} = \min(R_1 + \ldots + R_t)$

$$(X_{1}(1), \dots, X_{1}(n)) \longrightarrow 1$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(n) = f(X_{1}(n), X_{2}(n), X_{3}(n))$$

$$(X_{3}(1), \dots, X_{3}(n)) \longrightarrow 3$$

$$m = 3 \text{ in this example}$$

Goals:

- Obtain a computable characterization of \mathcal{R}_r (independent of n)
- Scaling behavior of $R_{sum,r}$ w.r.t. m (# sensors)
- Understand the benefit of interaction for different sources and functions

$$(X_{1}(1), \dots, X_{1}(n)) \longrightarrow 1$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(1) = f(X_{1}(1), X_{2}(1), X_{3}(1)),$$

$$Z(n) = f(X_{1}(n), X_{2}(n), X_{3}(n))$$

$$(X_{3}(1), \dots, X_{3}(n)) \longrightarrow 3$$

$$m = 3 \text{ in this example}$$

 $\{1, 2, ..., t\}$

A characterization independent of n:

$$\begin{aligned} \mathcal{R}_r &= \{ (R_1 \dots R_t) \mid \exists \ U^t, s.t. \ \forall j \in [1, t], k = (j \ \text{mod} \ m), \\ R_j &\geq I(X_k; U_j | U^{j-1}), \\ U_j - (U^{j-1}, X_k) - (X^{k-1}, X_{k+1}^m), \\ H(f(X^m) | U^t) &= 0 \end{aligned} \end{aligned}$$

[Nan Ma, PI, and P.Gupta: ISIT'09]

Achievability:

1st msg: Sensor-1 quantizes X₁ to U₁ and broadcasts U₁

 $R_1 = I(X_1; U_1), \quad U_1 - X_1 - X_2^m$

 2nd msg: Sensor-2 quantizes X₂ to U₂ with side info U₁ available to every node, and broadcasts U₂ (conditional coding)

$$R_2 = I(X_2; U_2 | U_1), \quad U_2 - (U_1, X_2) - (X_1, X_3^m)$$

• Recover Z based on $(\mathbf{U}_1 \dots \mathbf{U}_t)$: $H(f(X^m)|U_1 \dots U_t) = 0$

Converse (impossible to do better):

- Standard information inequalities
- Auxiliary random variables

 $U_1(i) = (M_1, X_1(1), \dots, X_1(i-1), \dots, X_m(1), \dots, X_m(i-1))$ $U_2 = M_2, \dots, U_t = M_t$

• Cardinality bounds on alphabets of auxiliary random variables

$$\mathcal{R}_{r} = \{ (R_{1} \dots R_{t}) \mid \exists U^{t}, s.t. \; \forall j \in [1, t], k = (j \text{ mod } m), \\ R_{j} \geq I(X_{k}; U_{j} | U^{j-1}), \\ (U_{j} - (U^{j-1}, X_{k}) - (X^{k-1}, X_{k+1}^{m}), \\ H(f(X^{m}) | U^{t}) = 0 \}$$

Minimum sum-rate:

$$R_{sum,r} = \min_{U^{t}} I(X^{m}; U^{t})$$

aux. r.v. subject to
$$\begin{cases} \forall j \in [1, t], k = (j \mod m), \\ U_{j} - (U^{j-1}, X_{k}) - (X^{k-1}, X_{k+1}^{m}), \\ H(f(X^{m})|U^{t}) = 0 \end{cases}$$

/

- Indep. Bernoulli sources: $Pr(X_i = 1) = p_i \in (0, 1), Pr(X_i = 0) = 1 p_i$
- Symmetric functions:
 - Invariant to permutations of arguments
 - Functions of $S = \sum_{i=1}^{m} X_i$ for binary sources $f(X^m) = f'(S)$
 - Maximal *f*'-monochromatic intervals: { [*a*, *b*] }
 - Computing *f* ⇔ Locating *S* in a union of max *f*'-monochromatic intervals

e.g.
$$f'(S) = \square \Leftrightarrow S$$
 in (2nd interval) U (4th interval)
Color: function f'

Computing $f \Leftrightarrow$ Locating S in a union of several max f'-monochromatic intervals

<u>Lemma 2(i):</u>

Given U^{t} , with probability one, there exists a single max f'-monochromatic interval to which S belongs.

S in $[a, b] \Leftrightarrow$ existence of a 1's and (m-b) 0's in X^m

e.g., if m = 5, then S in [2, 4] \Leftrightarrow at least two 1's and one 0 in X^{5}

Not required to learn which *X* 's are 1's and which are 0's

S in $[a, b] \Leftrightarrow$ existence of a 1's and (m-b) 0's in X^m

e.g., if m = 5, then S in [2, 4] \Leftrightarrow at least two 1's and one 0 in X^{5}

However, due to the structure of the multiround code, will inevitably learn a X's which are 1 and (m-b) X's which are 0.

<u>Lemma 2(ii):</u>

Given U^t , with probability one, can identify a X's which are 1 and (m-b) X's which are 0.

Lemma for single-letter characterization	Operational block-coding counterpart
(holds with Prob = 1)	(holds with Prob > 1 – Pr(blk. error))
Lemma 2: Given U ⁺ , (i) S is in a single interval [a, b], (ii) Can identify a X 's which are 1 and	Lemma 3: Given any message sequence, for <u>each sample i</u> , (i) Sink can identify <i>S</i> (<i>i</i>) within a single interval [<i>a_i</i> , <i>b_i</i>],
(<i>m-b</i>) <i>X</i> 's which are 0.	(ii) Sink can identify <i>a_i</i> sensors observing 1 and (<i>m-b_i</i>) sensors observing 0.

Example: PARITY

 $m \max \text{ monochromatic intervals} \{ [0, 0], [1, 1], \dots [m, m] \}$

For any zero-error code (Pr(blk. error) = 0), for each sample *i*:

- 1. Given the messages, the sink can identify S(i) within a single monochromatic interval \Leftrightarrow The sink knows S(i) exactly
- 2. If S(i) in $[a_i, a_i]$, the sink knows that a_i sensors observe 1's and $(m-a_i)$ sensors observe 0's \Leftrightarrow <u>The sink has to learn all the sources, in</u> <u>order to compute their PARITY!</u>

Other Implications

• Lemma 2 leads to a new lower bound for the minimum sum-rate

"Colocated Lower Bound":

$$R_{sum,r} \ge mh(p) - \sum_{v=1, a_v \neq b_v}^{v_{\max}} (b_v - a_v) h\left(\frac{E(S|S \in [a_v, b_v]) - a_v}{b_v - a_v}\right) Pr(S \in [a_v, b_v])$$

- For any symm fn of iid Ber(1/2) srcs, $\frac{1}{2}R_{sum,1} \leq R_{sum,r} \leq R_{sum,1}$
- For any type-threshold function (e.g., MIN, MAX) of iid Ber(*p*) sources $R_{sum,r}(m) = \Theta(1)$ (for zero-error computation $R_{sum,r}(m) = \Theta(\log m)$)
- <u>"Colocated Lower Bounds" for R_{sum,r} could be order-wise better than</u> <u>cut-set bounds</u>, e.g., for MIN, iid Ber(1/2), cut-set bound → 0 but new bound = Θ(1) (tight-scaling)
- Implications for secure multi-party computation

Outline

- Introduction
- General two-terminal problem
- Co-located network with independent sources
- General multi-terminal problem: some observations

Multiterminal interaction

- *m-terminal problem: m* sources, *m* samplewise functions
- <u>message exchanges:</u> t rounds
- *each round:* concurrent message transfers.
- can switch among many non-interactive configurations

Multiterminal interaction

- *m-terminal problem: m* sources, *m* samplewise functions
- <u>message exchanges:</u> t rounds
- <u>each round</u>: concurrent message transfers.
- can switch among many non-interactive configurations

Multiterminal interaction

- Complete rate region: # bits/sample in each link, each round
- Sum-rate region: # bits/sample in each link, sum over all rounds
 - Region of admissible tuples $(R_{AB}, R_{BA}, R_{AC}, R_{BC}, R_{CA}, R_{CB})$
- *Minimum sum-rate:* min # bits/sample, sum over all links & all rounds
 - $R_{sum} = \min R_{AB} + R_{BA} + R_{AC} + R_{BC} + R_{CA} + R_{CB}$
- Does interaction help?

Cut-set bounds

- Simple cut-set bounds:
 - $R_{AB} + R_{BA} + R_{AC} + R_{CA} \ge 2$ -term min sum-rate
 - $R_{AB} + R_{AC} \ge H(f_B(X, Y, Z), f_C(X, Y, Z) | Y, Z)$

- a) all sum rate lower bounds for each cut: Linear program
 - b) rates consistent with rate-regions for each cut: Convex program

Example 1: interactive Körner-Marton

• Interactive communication allowing all possible links:

•
$$R_{AB} + R_{AC} \ge H(f_C(X, Y) | Y) = h_2(p)$$

 $R_{BA} + R_{BC} \ge H(f_C(X, Y) | X) = h_2(p)$

Example 1: interactive Körner-Marton

 $0\frac{1}{2}$

 $1\frac{1}{2}$

Example 2: Körner-Marton "AND"

- Körner-Marton problem (interactive):
 - $(X, Y) \sim \mathsf{DSBS}(p); f_C(x, y) = x \text{ and } y$
 - Many-to-one interactive scheme
 - $R_{\text{sum}} \ge h_2(p) + h_2(p)$
 - Min rate is unknown
- Relay scheme (noninteractive)
 - $R_{AB} = H(X | Y) = h_2(p)$
 - $R_{BC} = H(X \text{ AND } Y) = h_2(0.5(1-p))$
 - $R_{\text{sum}} = h_2(p) + h_2(0.5(1-p))$
 - $< 2 h_2(p)$ for p > 1/3
 - Can compare configs. even if optimum is unknown

Example 3: Star networks

- $X_i \sim \text{iid Ber}(1/2), \ f(x^m) = \min_i x_i$
- Noninteractive star network
 - Cut-set bounds: by using [Han & Kobayashi]
 Each rate ≥ 1 bit/sample
 - $R_{sum}(m) = m$
- Interactive star network
 - 1 \rightarrow s: send \mathbf{X}_1 : $h_2(1/2)$
 - s \rightarrow 2: send \mathbf{X}_1 : $h_2(1/2)$
 - 2 \rightarrow s: send min{X₁, X₂}: $h_2(1/4)$
 - s \rightarrow 3: send min{ $\mathbf{X}_1, \mathbf{X}_2$ }: $h_2(1/4)$
 -
 - Sum-rate = $2h_2(1/2) + 2h_2(1/4) + 2h_2(1/8) + \dots < 7$
 - Using colocated lower bound: $1 \le R_{sum}(m) < 7$
- Interaction changes scaling law!

Concluding remarks

- General two-terminal problem:
 - "completely solved"
 - no benefit of interaction for data downloading;
 - benefit can be huge for computing non-trivial functions;
 - benefit depends on the structure of the functions and correlation
 - new unexplored dimension: infinite, infinitesimal-rate messages
- Colocated networks:
 - "completely solved" for independent sources
 - comm. structure reveals more information than demanded
 - cut-set bounds can be order-wise loose
 - "colocated lower bounds" order-wise tight

Questions

- Is it possible to <u>"bypass</u>" open problems in multiterminal "non-interactive" source coding by enlarging the space of strategies to include interactive ones?
- Are structured codes needed for interactive source coding?
- What are the channel coding duals of interactive source coding?
- How do distortion structure, distribution structure, and network structure influence efficiency limits in interactive source coding problems?

Thank you!

