
Lattices in AWGN Networks: What’s missing?

Bobak Nazer

Boston University

BIRS 2011: Algebraic Structure in Network Information Theory

August 16, 2011

Some Disclaimers

• This talk will include some conjectures...

Some Disclaimers

• This talk will include some speculation...

Some Disclaimers

• This talk will include some speculation...

• with the aim of making it a bit more interactive.

Some Disclaimers

• This talk will include some speculation...

• with the aim of making it a bit more interactive.

• Some of this will be tied to some (local) foods.

Some Disclaimers

• This talk will include some speculation...

• with the aim of making it a bit more interactive.

• Some of this will be tied to some (local) foods.

• ISIT ’11 Tutorial co-taught with Michael Gastpar now available at
ISIT website (and iss.bu.edu/bobak).

iss.bu.edu/bobak

Compute-and-Forward

x1

x2

H

z1

y1

z2

y2

x1

x2

• Two users want to send messages across the network with the help
of two relays.

Compute-and-Forward

x1

x2

z1

y1

z2

y2

x1

x2

• Two users want to send messages across the network with the help
of two relays.

Compute-and-Forward

x1

x2

z1

y1

z2

y2

x1

x2

x1

x2

• Two users want to send messages across the network with the help
of two relays.

• Decode-and-Forward: Each relay decodes one message.

Compute-and-Forward

x1

x2

z1

y1

z2

y2

x1 + x2 + z1

x1 − x2 + z2

x1

x2

• Two users want to send messages across the network with the help
of two relays.

• Decode-and-Forward: Each relay decodes one message.

• Compress-and-Forward: Relays send their observed signal to the
destination without decoding.

Compute-and-Forward

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

SNR in dB

R
at

e
pe

r
U

se
r

Upper Bound

Compress

Decode

Compute-and-Forward

x1

x2

z1

y1

z2

y2

x1

x2

• What if each relay could decode a linear equation?

Compute-and-Forward

x1

x2

z1

y1

z2

y2

x1 + x2

x1 − x2

x1

x2

• What if each relay could decode a linear equation?

• Compute-and-Forward: One relay decodes the sum of codewords.
Other relay decodes the difference.

Compute-and-Forward

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

SNR in dB

R
at

e
pe

r
U

se
r

Upper Bound

Compute

Compress

Decode

Compute-and-Forward Illustration

w2

w1
x1

x2

z

y
w1 ⊕w2

Compute-and-Forward Illustration

w2

w1
x1

x2

z

y
w1 ⊕w2

Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.

Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.

x1

x2

z

y

Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.

x1

x2

z

y

Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.

x1

x2

z

y

Decoding the Sum of Lattice Codewords

Encoders use the same nested
lattice codebook from
Erez-Zamir ’04.

Transmit lattice codewords:

x1 = t1

x2 = t2

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder recovers modulo sum.

[y] mod Λ

= [x1 + x2 + z] mod Λ

= [t1 + t2 + z] mod Λ

=
[

[t1 + t2] mod Λ + z
]

mod Λ Distributive Law

= [v + z] mod Λ

R =
1

2
log

(

P

N

)

Decoding the Sum of Lattice Codewords – MMSE Scaling

Encoders use the same nested
lattice codebook from
Erez-Zamir ’04.

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder scales by α, removes dithers, recovers modulo sum.

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + z)− d1 − d2] mod Λ

= [x1 + x2 − (1− α)(x1 + x2) + αz− d1 − d2] mod Λ

=
[

[t1 + t2] mod Λ− (1− α)(x1 + x2) + αz
]

mod Λ

= [v − (1− α)(x1 + x2) + αz] mod Λ

Effective Noise NEFFEC = (1− α)22P + α2N

Decoding the Sum of Lattice Codewords – MMSE Scaling

• Effective noise after scaling is NEFFEC = (1− α)22P + α2N .

• Minimized by setting α to be the MMSE coefficient:

αMMSE =
2P

N + 2P

• Plugging in, we get

NEFFEC =
2NP

N + 2P

• Resulting rate is

R =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1

2
+

P

N

)

• What happened to the “one plus” term?

Where is the “one plus”?

Set fine lattice density using:

R =
1

2
log

(

1 +
P

N

)

Where is the “one plus”?

Set fine lattice density using:

R =
1

2
log

(

1 +
P

N

)

Cut out codebook at power P .

Where is the “one plus”?

Set fine lattice density using:

R =
1

2
log

(

1 +
P

N

)

Cut out codebook at power P .

Set fine lattice density using:

R =
1

2
log

(

1 +
2P

N

)

Where is the “one plus”?

Set fine lattice density using:

R =
1

2
log

(

1 +
P

N

)

Cut out codebook at power P .

Set fine lattice density using:

R =
1

2
log

(

1 +
2P

N

)

Where is the “one plus”?

Set fine lattice density using:

R =
1

2
log

(

1 +
P

N

)

Cut out codebook at power P .

Set fine lattice density using:

R =
1

2
log

(

1 +
2P

N

)

Cut out codebook at power P .

Where is the “one plus”?

Set fine lattice density using:

R =
1

2
log

(

1 +
P

N

)

Cut out codebook at power P .

Set fine lattice density using:

R =
1

2
log

(

1 +
2P

N

)

Cut out codebook at power P .

Resulting codebook only has R =
1

2
log

(

1

2
+

P

N

)

!

Where is the “one plus”?

• This limitation seems inherent to nested lattice codes combined with
lattice decoding.

• Also seems inherent to any scheme that treats all codewords as “the
same” (e.g. ML decoding). Connected to decoding analysis in
Wilson-Narayanan-Pfister-Sprintson ’10.

• What about MAP decoding?

• Ice Wine Problem: Prove that the sum of codewords x1 + x2 can be
recovered from y = x1 + x2 + z at rate

1

2
log

(

1 +
P

N

)

Where is the “one plus”?

• This limitation seems inherent to nested lattice codes combined with
lattice decoding.

• Also seems inherent to any scheme that treats all codewords as “the
same” (e.g. ML decoding). Connected to decoding analysis in
Wilson-Narayanan-Pfister-Sprintson ’10.

• What about MAP decoding?

• Ice Wine Problem: Prove that the sum of codewords x1 + x2 can be
recovered from y = x1 + x2 + z at rate

1

2
log

(

1 +
P

N

)

Or prove that this is impossible.

Where is the “one plus”?

• Loss is at most 1/2 of a bit. Is this such a big deal?

Where is the “one plus”?

• Loss is at most 1/2 of a bit. Is this such a big deal? Yes, especially
for layering.

Where is the “one plus”?

• Loss is at most 1/2 of a bit. Is this such a big deal? Yes, especially
for layering.

• Consider employing a superposition of many lattice codewords.

• As the number of layers increases, the effective SNR of each layer
decreases.

• Hard to analyze layered lattice codebooks outside the high SNR
regime.

• Shows up in interference channels (e.g. Sridharan et al. ’08)

Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.

Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.

Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.

Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.

Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.

Unequal Power Constraints – Double Nesting

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ2

• Encoder 1 sends x1 = [t1 + d1] mod Λ1. Coarse lattice Λ1 has
second moment P1.

• Encoder 2 sends x2 = [t2 + d2] mod Λ2. Coarse lattice Λ2 has
second moment P2 > P1.

• Decoder performs MMSE scaling, remove dithers, recovers mod Λ2

sum.

R1 =
1

2
log

(

P1

P1 + P2

+
P1

N

)

R2 =
1

2
log

(

P2

P1 + P2

+
P2

N

)

Case Study – Hadamard Relay Network

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

R1

x1R

R2

x2R

...

RK

xKR

z1R
y1R

z2R
y2R

zKR

yKR

D

ŵ1

ŵ2

...
ŵK

• Equal rates R. H is a Hadamard matrix, HHT = KI

Upper Bound Compute-and-Forward

1

2
log

(

1 +
P

N

)

1

2
log

(

1

K
+

P

N

)

Compress-and-Forward Decode-and-Forward

1

2
log

(

1 +
P

N

P

N +KP

)

1

2K
log

(

1 +
KP

N

)

Case Study – Hadamard Relay Network

w1 E1
x1

w2 E2
x2

...

wK EK
xK

1 1 · · · 1

1 1 · · · −1

...
...

. . .
...

1 −1 · · · −1

z1
y1

z2
y2

zK
yK

R1

x1R

R2

x2R

...

RK

xKR

z1R
y1R

z2R
y2R

zKR

yKR

D

ŵ1

ŵ2

...
ŵK

• Equal rates R. H is a Hadamard matrix, HHT = KI

Upper Bound Compute-and-Forward

1

2
log

(

1 +
P

N

)

1

2
log

(

1

K
+

P

N

)

Compress-and-Forward Decode-and-Forward

1

2
log

(

1 +
P

N

P

N +KP

)

1

2K
log

(

1 +
KP

N

)

Compute-and-Forward: Fading Channels

Transmitters do not know
channel realization.

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

t1 E1
x1

h1

t2 E2
x2 h2

tK EK
xK

hK...

z

y
D v̂

v =

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

• Decoder removes dithers and recovers integer combination

v =
[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

• Receiver can use its knowledge of the channel gains to match the
equation coefficients aℓ to the channel coefficients hℓ.

Distributive Law

• Distributive Law also holds for integer combinations. Let a, b ∈ Z.

[

a[x1] mod Λ + b[x2] mod Λ

]

mod Λ

=

[

a
(

x1 −QΛ(x1)
)

+ b
(

x2 −QΛ(x2)
)

]

mod Λ

=

[

ax1 + bx2 − aQΛ(x1)− bQΛ(x2)

]

mod Λ

= [ax1 + bx2] mod Λ

• Last step follows since since aQΛ(x1) and bQΛ(x2) are elements of
the lattice Λ.

Compute-and-Forward: Fading Channels

• Transmit dithered codewords xℓ = [tℓ + dℓ] mod Λ

• Decoder removes dithers and recovers integer combination

[

y−

K
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

K
∑

ℓ=1

hℓxℓ + z−
K
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

K
∑

ℓ=1

aℓ(xℓ − dℓ) +

K
∑

ℓ=1

(hℓ − aℓ)xℓ + z
]

mod Λ

=

[

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ +

K
∑

ℓ=1

(hℓ − aℓ)xℓ + z

]

mod Λ Distributive Law

Effective Noise

Compute-and-Forward: Fading Channels – Effective Noise

• Effective noise due to mismatch between channel coefficients
h = [h1 · · · hK]T and equation coefficients a = [a1 · · · aK]T .

NEFFEC = N + P‖h− a‖2

R =
1

2
log

(

P

N + P‖h− a‖2

)

Compute-and-Forward: Fading Channels – Effective Noise

• Effective noise due to mismatch between channel coefficients
h = [h1 · · · hK]T and equation coefficients a = [a1 · · · aK]T .

NEFFEC = N + P‖h− a‖2

R =
1

2
log

(

P

N + P‖h− a‖2

)

• Can do better with MMSE scaling.

NEFFEC = α2N + P‖αh − a‖2

R = max
α

1

2
log

(

P

α2N + P‖αh− a‖2

)

=
1

2
log

(

N + P‖h‖2

N‖a‖2 + P (‖h‖2‖a‖2 − (hTa)2)

)

• See Nazer-Gastpar ’11 for more details.

Compute-and-Forward: Fading Channels – Special Cases

• The rate expression simplifies in some special cases.

R =
1

2
log

(

N + P‖h‖2

N‖a‖2 + P (‖h‖2‖a‖2 − (hTa)2)

)

• Integer channels: h = a.

R =
1

2
log

(

1

‖a‖2
+

P

N

)

• Recovering a single message: Set a = δm, the mth unit vector.

R =
1

2
log

(

1 +
h2mP

N + P
∑

ℓ 6=m h2ℓ

)

Compute-and-Forward: Fading Channels – Finite Field Message

Transmitters do not know
channel realization.

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

w1 E1
x1

h1

w2 E2
x2 h2

wK EK
xK

hK...

z

y
D û

u =

K
⊕

ℓ=1

aℓwℓ

• Due to Construction A, mapping tℓ = φ(wℓ) between messages and
lattice points preserves linearity.

φ−1

(

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

)

=
[

K
∑

ℓ=1

aℓwℓ

]

mod q =

K
⊕

ℓ=1

aℓwℓ

• Digital interface that fits well with network coding.

Compute-and-Forward: Fading Channels – Illustration

All users pick the same nested lattice code:

Compute-and-Forward: Fading Channels – Illustration

Choose messages over field wℓ ∈ F
k
q :

w2

w1

Compute-and-Forward: Fading Channels – Illustration

Map wℓ to lattice point tℓ = φ(wℓ):

w2

w1

Compute-and-Forward: Fading Channels – Illustration

Transmit lattice points over the channel:

w2

w1
x1

h1

x2

h2

z

y

h = [1.4 2.1]

a = [2 3]

Compute-and-Forward: Fading Channels – Illustration

Transmit lattice points over the channel:

w2

w1
x1

h1

x2

h2

z

y

h = [1.4 2.1]

a = [2 3]

Compute-and-Forward: Fading Channels – Illustration

Lattice codewords are scaled by channel coefficients:

w2

w1
x1

h1

x2

h2

z

y

h = [1.4 2.1]

a = [2 3]

Compute-and-Forward: Fading Channels – Illustration

Scaled codewords added together plus noise:

w2

w1
x1

h1

x2

h2

z

y

h = [1.4 2.1]

a = [2 3]

Compute-and-Forward: Fading Channels – Illustration

Scaled codewords added together plus noise:

w2

w1
x1

h1

x2

h2

z

y

h = [1.4 2.1]

a = [2 3]

Compute-and-Forward: Fading Channels – Illustration

Extra noise penalty for non-integer channel coefficients:

w2

w1
x1

h1

x2

h2

z

y

h = [1.4 2.1]

a = [2 3]

Effective noise: N + P‖h− a‖2

Compute-and-Forward: Fading Channels – Illustration

Scale output by α to reduce non-integer noise penalty:

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Compute-and-Forward: Fading Channels – Illustration

Scale output by α to reduce non-integer noise penalty:

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Compute-and-Forward: Fading Channels – Illustration

Decode to closest lattice point:

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Compute-and-Forward: Fading Channels – Illustration

Compute sum of lattice points modulo the coarse lattice:

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Compute-and-Forward: Fading Channels – Illustration

Map back to equation of message symbols over the field:

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

K
⊕

ℓ=1

aℓwℓ

Computation over Fading Channels – Multiple Receivers

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 û1

D2 û2

...

DK ûK

• Equal rates R. No channel state information (CSI) at transmitters.
• Receivers use their CSI to select coefficients, decode linear equation

uk =
K
⊕

ℓ=1

akℓwℓ

• Reliable decoding possible if

R < min
k:akℓ 6=0

1

2
log

(

N + P‖hk‖
2

N‖ak‖2 + P (‖hk‖2‖ak‖2 − (hT
k ak)

2)

)

Computation over Fading Channels – No CSIT

w1 E1
x1

h1

w2 E2
x2 h2

w3 E3
x3

h3

z

y
D û

u =
K
⊕

ℓ=1

aℓwℓ

• Three transmitters that
do not know the fading
coefficients.

• Average rate plotted for
i.i.d. Gaussian fading.

Relay either decodes some
linear function of messages
or an individual message.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Transmitter Power in dB

A
ve

ra
te

 R
at

e
in

 b
its

 p
er

 c
ha

nn
el

 u
se

Decode an Equation
Decode a Message
Interference as Noise

Computation over Fading Channels – No CSIT

• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.

10dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Channel coefficient h

M
es

sa
ge

 r
at

e
R

Upper Bound

Compute

Decode Both

Computation over Fading Channels – No CSIT

• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.

20dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Channel coefficient h

M
es

sa
ge

 r
at

e
R

Upper Bound

Compute

Decode Both

Computation over Fading Channels – No CSIT

• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.

30dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Channel coefficient h

M
es

sa
ge

 r
at

e
R

Upper Bound

Compute

Decode Both

Computation over Fading Channels – No CSIT

• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.

40dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Channel coefficient h

M
es

sa
ge

 r
at

e
R

Upper Bound

Compute

Decode Both

Computation over Fading Channels – No CSIT

• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.

50dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

Channel coefficient h

M
es

sa
ge

 r
at

e
R

Upper Bound

Compute

Decode Both

Can we fill in the valleys?

• Compute-and-forward does well at rational coefficients and poorly at
irrational coefficients.

• This is the opposite of the behavior observed in “real interference
alignment” (Motahari et al. ’09).

• As demonstrated in the previous talk, we can do better using
superposition. This alters the effective channel gains.

• Next talk covers this issue in depth at high SNR.

• How about finite SNR? Similar issues as encountered in static
interference channels.

Successive Cancellation

• Receiver observes y =

L
∑

ℓ=1

hℓxℓ + z

Successive cancellation:

• Decode xi.

• Calculate y − hixi.

• Receiver now has

∑

ℓ 6=i

hℓxℓ + z

Successive Cancellation Computation

• Receiver observes y =

L
∑

ℓ=1

hℓxℓ + z

Successive cancellation:

• Decode xi.

• Calculate y − hixi.

• Receiver now has

∑

ℓ 6=i

hℓxℓ + z

Successive computation:

• Decode

L
∑

ℓ=1

aℓxℓ.

• Calculate y+ β

L
∑

ℓ=1

aℓxℓ.

• Receiver now has

L
∑

ℓ=1

(hℓ + βaℓ)xℓ + z

Successive Computation

• So far, we have only decoded a modulo sum of the lattice points:
[

∑

ℓ

aℓtℓ

]

mod Λ .

Successive Computation

• So far, we have only decoded a modulo sum of the lattice points:
[

∑

ℓ

aℓtℓ

]

mod Λ .

• First, add back in the dithers to get the modulo sum of codewords:
[

[

∑

ℓ

aℓtℓ

]

mod Λ +
[

∑

ℓ

aℓdℓ

]

mod Λ

]

mod Λ =
[

∑

ℓ

aℓxℓ

]

mod Λ

Successive Computation

• So far, we have only decoded a modulo sum of the lattice points:
[

∑

ℓ

aℓtℓ

]

mod Λ .

• First, add back in the dithers to get the modulo sum of codewords:
[

[

∑

ℓ

aℓtℓ

]

mod Λ +
[

∑

ℓ

aℓdℓ

]

mod Λ

]

mod Λ =
[

∑

ℓ

aℓxℓ

]

mod Λ

• Subtract this from y to expose the coarse lattice point nearest to
the real sum:

y −
[

∑

ℓ

aℓxℓ

]

mod Λ = QΛ

(

∑

ℓ

aℓxℓ

)

+
∑

ℓ

(hℓ − aℓ)xℓ + z

Successive Computation

• So far, we have only decoded a modulo sum of the lattice points:
[

∑

ℓ

aℓtℓ

]

mod Λ .

• First, add back in the dithers to get the modulo sum of codewords:
[

[

∑

ℓ

aℓtℓ

]

mod Λ +
[

∑

ℓ

aℓdℓ

]

mod Λ

]

mod Λ =
[

∑

ℓ

aℓxℓ

]

mod Λ

• Subtract this from y to expose the coarse lattice point nearest to
the real sum:

y −
[

∑

ℓ

aℓxℓ

]

mod Λ = QΛ

(

∑

ℓ

aℓxℓ

)

+
∑

ℓ

(hℓ − aℓ)xℓ + z

• Coarse lattice point easier to decode than fine lattice point:

QΛ

(

QΛ

(

∑

ℓ

aℓxℓ

)

+
∑

ℓ

(hℓ − aℓ)xℓ + z

)

= QΛ

(

∑

ℓ

aℓxℓ

)

w.h.p.

Successive Computation Illustration

We have the modulo sum.

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Successive Computation Illustration

Subtract modulo sum from the received signal.

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Successive Computation Illustration

Decode to the closest coarse lattice point.

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Successive Computation Illustration

Decode to the closest coarse lattice point.

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

Successive Computation Illustration

Now we can infer the real sum.

w2

w1
x1

h1

x2

h2

z

y

αh = [α1.4 α2.1]

a = [2 3]

Effective noise: α2N + P‖αh− a‖2

∑

ℓ

aℓxℓ

Successive Computation

• Finally, we get back the real sum:

[

∑

ℓ

aℓxℓ

]

mod Λ +QΛ

(

∑

ℓ

aℓxℓ

)

=
∑

ℓ

aℓxℓ

• What can we do with this?

• Change the effective channel gains and decode a new equation.

• Recover some existing results on interference alignment.

Alignment via Successive Computation

• Assume each receiver observes yk = hxk +
∑

ℓ 6=k

xℓ + zk.

• Decode equation of the form pxk +
∑

ℓ 6=k

qxℓ.

• Rate
1

2
log

(

SNR

q2 + SNR|qh− p|2

)

≤
1

2
log

(

SNR

q2 + SNR/q2

)

• Plug in q ≈ SNR1/4 to get R ≈ 1

4
log(P).

• Calculate yk −
p

q
xk +

∑

ℓ 6=k

xℓ =

(

h−
p

q

)

xk + zk

• By Khinchin’s Theorem, residual channel coefficient allows
R ≈ 1

4
log(P).

Dirty Paper Coding

s is interference known
noncausally to the encoder.

Assume s i.i.d. Gaussian,
very large variance PS .

Erez-Shamai-Zamir ’05:

Encoder subtracts αs, dithers,
and takes mod Λ.

x = [t− αs+ d] mod Λ

w E
x

s z

y
D ŵ

Decoder scales by α, removes dither, takes mod Λ, and recovers t.
Interference is cancelled.

[αy − d] mod Λ = [x+ αs− d+ z− (1− α)x] mod Λ

=
[

[t− αs+ d] mod Λ + αs− d+ z− (1− α)x
]

mod Λ

=
[

t+ z− (1− α)x
]

mod Λ

Dirty Paper Coding

s is interference known
noncausally to the encoder.

Assume s i.i.d. Gaussian,
very large variance PS .

Erez-Shamai-Zamir ’05:

Encoder subtracts αs, dithers,
and takes mod Λ.

x = [t− αs+ d] mod Λ

w E
x

s z

y
D ŵ

Decoder scales by α, removes dither, takes mod Λ, and recovers t.
Interference is cancelled.

[αy − d] mod Λ = [x+ αs− d+ z− (1− α)x] mod Λ

=
[

[t− αs+ d] mod Λ + αs− d+ z− (1− α)x
]

mod Λ

=
[

t+ z− (1− α)x
]

mod Λ

Dirty Paper Coding

s is interference known
noncausally to the encoder.

Assume s i.i.d. Gaussian,
very large variance PS .

Erez-Shamai-Zamir ’05:

Encoder subtracts αs, dithers,
and takes mod Λ.

x = [t− αs+ d] mod Λ

w E
x

s z

y
D ŵ

Decoder scales by α, removes dither, takes mod Λ, and recovers t.
Interference is cancelled.

[αy − d] mod Λ = [x+ αs− d+ z− (1− α)x] mod Λ

=
[

[t− αs+ d] mod Λ + αs− d+ z− (1− α)x
]

mod Λ

=
[

t+ z− (1− α)x
]

mod Λ

Dirty Paper Coding

s is interference known
noncausally to the encoder.

Assume s i.i.d. Gaussian,
very large variance PS .

Erez-Shamai-Zamir ’05:

Encoder subtracts αs, dithers,
and takes mod Λ.

x = [t− αs+ d] mod Λ

w E
x

s z

y
D ŵ

Decoder scales by α, removes dither, takes mod Λ, and recovers t.
Interference is cancelled.

[αy − d] mod Λ = [x+ αs− d+ z− (1− α)x] mod Λ

=
[

[t− αs+ d] mod Λ + αs− d+ z− (1− α)x
]

mod Λ

=
[

t+ z− (1− α)x
]

mod Λ

Dirty Gaussian Multiple-Access Channel

w1 E1
x1

s1

w2 E2
x2

s2

z

y
D ŵ1, ŵ2

Philosof-Zamir-Erez-Khisti ’11:

• Encoder 1 knows interference s1.

• Encoder 2 knows interference s2.

• Need to cancel out interference in a distributed fashion.

• Assume i.i.d. Gaussian interference with very large variance PS .
Random i.i.d. methods yield rate that goes to 0 as PS goes to
infinity.

Dirty Gaussian Multiple-Access Channel

Subtract (part of) the interference signals ahead of time:

x1 = [t1 − αs1 + d1] mod Λ

x2 = [t2 − αs2 + d2] mod Λ

Decoder removes dithers:

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + s1 + s2 + z)− d1 − d2] mod Λ

= [x1 + x2 + α(s1 + s2)− (1− α)(x1 + x2) + αz) − d1 − d2] mod Λ

=
[

t1 + t2 + (1− α)(x1 + x2) + αz
]

mod Λ

Select α = 2P/(2P +N) to obtain

R1 +R2 ≤
1

2
log

(

1

2
+

P

N

)

Maple Syrup Problem: Prove this is the best possible
.

Dirty Gaussian Multiple-Access Channel

Subtract (part of) the interference signals ahead of time:

x1 = [t1 − αs1 + d1] mod Λ

x2 = [t2 − αs2 + d2] mod Λ

Decoder removes dithers:

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + s1 + s2 + z)− d1 − d2] mod Λ

= [x1 + x2 + α(s1 + s2)− (1− α)(x1 + x2) + αz) − d1 − d2] mod Λ

=
[

t1 + t2 + (1− α)(x1 + x2) + αz
]

mod Λ

Select α = 2P/(2P +N) to obtain

R1 +R2 ≤
1

2
log

(

1

2
+

P

N

)

Maple Syrup Problem: Prove this is the best possible (or find a better
acheivable scheme).

AWGN Techniques

• Superposition (Shlomo’s Talk)

• Fading

• Successive Cancellation

• Dirty Paper Coding

• Joint Decoding (Uri’s Talk)

• List Decoding (Natasha’s Talk)

AWGN Techniques

• Superposition (Shlomo’s Talk)

• Fading

• Successive Cancellation

• Dirty Paper Coding

• Joint Decoding (Uri’s Talk)

• List Decoding (Natasha’s Talk)

• Timbit Problem: Are there are any AWGN encoding/decoding
techniques that are not available to lattice codes? That is, is there a
(simple, linear, AWGN, etc.) network where lattices are
outperformed by i.i.d. random codes?

AWGN Techniques

• Superposition (Shlomo’s Talk)

• Fading

• Successive Cancellation

• Dirty Paper Coding

• Joint Decoding (Uri’s Talk)

• List Decoding (Natasha’s Talk)

• Timbit Problem: Are there are any AWGN encoding/decoding
techniques that are not available to lattice codes? That is, is there a
(simple, linear, AWGN, etc.) network where lattices are
outperformed by i.i.d. random codes?

• Outer bounds?

