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• This talk will include some speculation...

• with the aim of making it a bit more interactive.

• Some of this will be tied to some (local) foods.

• ISIT ’11 Tutorial co-taught with Michael Gastpar now available at
ISIT website (and iss.bu.edu/bobak).

iss.bu.edu/bobak
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Compute-and-Forward
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• Two users want to send messages across the network with the help
of two relays.

• Decode-and-Forward: Each relay decodes one message.

• Compress-and-Forward: Relays send their observed signal to the
destination without decoding.
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• What if each relay could decode a linear equation?

• Compute-and-Forward: One relay decodes the sum of codewords.
Other relay decodes the difference.
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Compute-and-Forward Illustration
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Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.
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Decoding the Sum of Lattice Codewords

Encoders use the same nested
lattice codebook from
Erez-Zamir ’04.

Transmit lattice codewords:

x1 = t1

x2 = t2

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder recovers modulo sum.

[y] mod Λ

= [x1 + x2 + z] mod Λ

= [t1 + t2 + z] mod Λ

=
[

[t1 + t2] mod Λ + z
]

mod Λ Distributive Law

= [v + z] mod Λ

R =
1

2
log

(

P

N

)



Decoding the Sum of Lattice Codewords – MMSE Scaling

Encoders use the same nested
lattice codebook from
Erez-Zamir ’04.

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder scales by α, removes dithers, recovers modulo sum.

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + z)− d1 − d2] mod Λ

= [x1 + x2 − (1− α)(x1 + x2) + αz− d1 − d2] mod Λ

=
[

[t1 + t2] mod Λ− (1− α)(x1 + x2) + αz
]

mod Λ

= [v − (1− α)(x1 + x2) + αz] mod Λ

Effective Noise NEFFEC = (1− α)22P + α2N



Decoding the Sum of Lattice Codewords – MMSE Scaling

• Effective noise after scaling is NEFFEC = (1− α)22P + α2N .

• Minimized by setting α to be the MMSE coefficient:

αMMSE =
2P

N + 2P

• Plugging in, we get

NEFFEC =
2NP

N + 2P

• Resulting rate is

R =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1

2
+

P

N

)

• What happened to the “one plus” term?
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Set fine lattice density using:

R =
1

2
log

(

1 +
2P

N

)

Cut out codebook at power P .

Resulting codebook only has R =
1

2
log

(

1

2
+

P

N

)

!



Where is the “one plus”?

• This limitation seems inherent to nested lattice codes combined with
lattice decoding.

• Also seems inherent to any scheme that treats all codewords as “the
same” (e.g. ML decoding). Connected to decoding analysis in
Wilson-Narayanan-Pfister-Sprintson ’10.

• What about MAP decoding?

• Ice Wine Problem: Prove that the sum of codewords x1 + x2 can be
recovered from y = x1 + x2 + z at rate

1

2
log

(
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P
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Where is the “one plus”?

• This limitation seems inherent to nested lattice codes combined with
lattice decoding.

• Also seems inherent to any scheme that treats all codewords as “the
same” (e.g. ML decoding). Connected to decoding analysis in
Wilson-Narayanan-Pfister-Sprintson ’10.

• What about MAP decoding?

• Ice Wine Problem: Prove that the sum of codewords x1 + x2 can be
recovered from y = x1 + x2 + z at rate

1

2
log

(

1 +
P

N

)

Or prove that this is impossible.



Where is the “one plus”?

• Loss is at most 1/2 of a bit. Is this such a big deal?



Where is the “one plus”?

• Loss is at most 1/2 of a bit. Is this such a big deal? Yes, especially
for layering.



Where is the “one plus”?

• Loss is at most 1/2 of a bit. Is this such a big deal? Yes, especially
for layering.

• Consider employing a superposition of many lattice codewords.

• As the number of layers increases, the effective SNR of each layer
decreases.

• Hard to analyze layered lattice codebooks outside the high SNR
regime.

• Shows up in interference channels (e.g. Sridharan et al. ’08)



Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.
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Unequal Power Constraints – Double Nesting

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ2

• Encoder 1 sends x1 = [t1 + d1] mod Λ1. Coarse lattice Λ1 has
second moment P1.

• Encoder 2 sends x2 = [t2 + d2] mod Λ2. Coarse lattice Λ2 has
second moment P2 > P1.

• Decoder performs MMSE scaling, remove dithers, recovers mod Λ2

sum.

R1 =
1

2
log

(

P1

P1 + P2

+
P1

N

)

R2 =
1

2
log

(

P2

P1 + P2

+
P2

N

)



Case Study – Hadamard Relay Network
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• Equal rates R. H is a Hadamard matrix, HHT = KI
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Compute-and-Forward: Fading Channels

Transmitters do not know
channel realization.

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

t1 E1
x1

h1

t2 E2
x2 h2

tK EK
xK

hK...

z

y
D v̂

v =

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

• Decoder removes dithers and recovers integer combination

v =
[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

• Receiver can use its knowledge of the channel gains to match the
equation coefficients aℓ to the channel coefficients hℓ.



Distributive Law

• Distributive Law also holds for integer combinations. Let a, b ∈ Z.

[

a[x1] mod Λ + b[x2] mod Λ

]

mod Λ

=

[

a
(

x1 −QΛ(x1)
)

+ b
(

x2 −QΛ(x2)
)

]

mod Λ

=

[

ax1 + bx2 − aQΛ(x1)− bQΛ(x2)

]

mod Λ

= [ax1 + bx2] mod Λ

• Last step follows since since aQΛ(x1) and bQΛ(x2) are elements of
the lattice Λ.



Compute-and-Forward: Fading Channels

• Transmit dithered codewords xℓ = [tℓ + dℓ] mod Λ

• Decoder removes dithers and recovers integer combination

[

y−

K
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

K
∑

ℓ=1

hℓxℓ + z−
K
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

K
∑

ℓ=1

aℓ(xℓ − dℓ) +

K
∑

ℓ=1

(hℓ − aℓ)xℓ + z
]

mod Λ

=

[

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ +

K
∑

ℓ=1

(hℓ − aℓ)xℓ + z

]

mod Λ Distributive Law

Effective Noise



Compute-and-Forward: Fading Channels – Effective Noise

• Effective noise due to mismatch between channel coefficients
h = [h1 · · · hK ]T and equation coefficients a = [a1 · · · aK ]T .

NEFFEC = N + P‖h− a‖2

R =
1

2
log

(

P

N + P‖h− a‖2

)



Compute-and-Forward: Fading Channels – Effective Noise

• Effective noise due to mismatch between channel coefficients
h = [h1 · · · hK ]T and equation coefficients a = [a1 · · · aK ]T .

NEFFEC = N + P‖h− a‖2

R =
1

2
log

(

P

N + P‖h− a‖2

)

• Can do better with MMSE scaling.

NEFFEC = α2N + P‖αh − a‖2

R = max
α

1

2
log

(

P

α2N + P‖αh− a‖2

)

=
1

2
log

(

N + P‖h‖2

N‖a‖2 + P (‖h‖2‖a‖2 − (hTa)2)

)

• See Nazer-Gastpar ’11 for more details.



Compute-and-Forward: Fading Channels – Special Cases

• The rate expression simplifies in some special cases.

R =
1

2
log

(

N + P‖h‖2

N‖a‖2 + P (‖h‖2‖a‖2 − (hTa)2)

)

• Integer channels: h = a.

R =
1

2
log

(

1

‖a‖2
+

P

N

)

• Recovering a single message: Set a = δm, the mth unit vector.

R =
1

2
log

(

1 +
h2mP

N + P
∑

ℓ 6=m h2ℓ

)



Compute-and-Forward: Fading Channels – Finite Field Message

Transmitters do not know
channel realization.

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

w1 E1
x1

h1

w2 E2
x2 h2

wK EK
xK

hK...

z

y
D û

u =

K
⊕

ℓ=1

aℓwℓ

• Due to Construction A, mapping tℓ = φ(wℓ) between messages and
lattice points preserves linearity.

φ−1

(

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

)

=
[

K
∑

ℓ=1

aℓwℓ

]

mod q =

K
⊕

ℓ=1

aℓwℓ

• Digital interface that fits well with network coding.



Compute-and-Forward: Fading Channels – Illustration

All users pick the same nested lattice code:
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Choose messages over field wℓ ∈ F
k
q :

w2

w1



Compute-and-Forward: Fading Channels – Illustration

Map wℓ to lattice point tℓ = φ(wℓ):

w2

w1
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Transmit lattice points over the channel:
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Compute-and-Forward: Fading Channels – Illustration

Lattice codewords are scaled by channel coefficients:
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a = [ 2 3 ]



Compute-and-Forward: Fading Channels – Illustration

Scaled codewords added together plus noise:
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Compute-and-Forward: Fading Channels – Illustration

Extra noise penalty for non-integer channel coefficients:
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Effective noise: N + P‖h− a‖2



Compute-and-Forward: Fading Channels – Illustration
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Compute-and-Forward: Fading Channels – Illustration

Decode to closest lattice point:
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αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2



Compute-and-Forward: Fading Channels – Illustration

Compute sum of lattice points modulo the coarse lattice:

w2

w1
x1
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x2
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z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2



Compute-and-Forward: Fading Channels – Illustration

Map back to equation of message symbols over the field:

w2

w1
x1

h1

x2

h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2

K
⊕

ℓ=1

aℓwℓ



Computation over Fading Channels – Multiple Receivers

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 û1

D2 û2

...

DK ûK

• Equal rates R. No channel state information (CSI) at transmitters.
• Receivers use their CSI to select coefficients, decode linear equation

uk =
K
⊕

ℓ=1

akℓwℓ

• Reliable decoding possible if

R < min
k:akℓ 6=0

1

2
log

(

N + P‖hk‖
2

N‖ak‖2 + P (‖hk‖2‖ak‖2 − (hT
k ak)

2)

)



Computation over Fading Channels – No CSIT

w1 E1
x1

h1

w2 E2
x2 h2

w3 E3
x3

h3

z

y
D û

u =
K
⊕

ℓ=1

aℓwℓ

• Three transmitters that
do not know the fading
coefficients.

• Average rate plotted for
i.i.d. Gaussian fading.

Relay either decodes some
linear function of messages
or an individual message.
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Computation over Fading Channels – No CSIT

• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.
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• Receiver observes y = x1 + hx2 + z.
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Can we fill in the valleys?

• Compute-and-forward does well at rational coefficients and poorly at
irrational coefficients.

• This is the opposite of the behavior observed in “real interference
alignment” (Motahari et al. ’09).

• As demonstrated in the previous talk, we can do better using
superposition. This alters the effective channel gains.

• Next talk covers this issue in depth at high SNR.

• How about finite SNR? Similar issues as encountered in static
interference channels.



Successive Cancellation

• Receiver observes y =

L
∑

ℓ=1

hℓxℓ + z

Successive cancellation:

• Decode xi.

• Calculate y − hixi.

• Receiver now has

∑

ℓ 6=i

hℓxℓ + z



Successive Cancellation Computation

• Receiver observes y =

L
∑

ℓ=1

hℓxℓ + z

Successive cancellation:

• Decode xi.

• Calculate y − hixi.

• Receiver now has

∑

ℓ 6=i

hℓxℓ + z

Successive computation:

• Decode

L
∑

ℓ=1

aℓxℓ.

• Calculate y+ β

L
∑

ℓ=1

aℓxℓ.

• Receiver now has

L
∑

ℓ=1

(hℓ + βaℓ)xℓ + z
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• So far, we have only decoded a modulo sum of the lattice points:
[
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• First, add back in the dithers to get the modulo sum of codewords:
[
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]
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ℓ

aℓdℓ

]

mod Λ

]

mod Λ =
[
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]
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• Subtract this from y to expose the coarse lattice point nearest to
the real sum:

y −
[

∑

ℓ

aℓxℓ

]

mod Λ = QΛ

(

∑

ℓ

aℓxℓ

)

+
∑

ℓ

(hℓ − aℓ)xℓ + z

• Coarse lattice point easier to decode than fine lattice point:

QΛ

(

QΛ

(

∑

ℓ

aℓxℓ

)

+
∑

ℓ

(hℓ − aℓ)xℓ + z

)

= QΛ

(

∑

ℓ

aℓxℓ

)

w.h.p.



Successive Computation Illustration

We have the modulo sum.
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w1
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h1
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αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2
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Successive Computation Illustration

Now we can infer the real sum.

w2

w1
x1

h1

x2

h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2

∑

ℓ

aℓxℓ



Successive Computation

• Finally, we get back the real sum:

[

∑

ℓ

aℓxℓ

]

mod Λ +QΛ

(

∑

ℓ

aℓxℓ

)

=
∑

ℓ

aℓxℓ

• What can we do with this?

• Change the effective channel gains and decode a new equation.

• Recover some existing results on interference alignment.



Alignment via Successive Computation

• Assume each receiver observes yk = hxk +
∑

ℓ 6=k

xℓ + zk.

• Decode equation of the form pxk +
∑

ℓ 6=k

qxℓ.

• Rate
1

2
log

(

SNR

q2 + SNR|qh− p|2

)

≤
1

2
log

(

SNR

q2 + SNR/q2

)

• Plug in q ≈ SNR1/4 to get R ≈ 1

4
log(P ).

• Calculate yk −
p

q
xk +

∑

ℓ 6=k

xℓ =

(

h−
p

q

)

xk + zk

• By Khinchin’s Theorem, residual channel coefficient allows
R ≈ 1

4
log(P ).



Dirty Paper Coding

s is interference known
noncausally to the encoder.

Assume s i.i.d. Gaussian,
very large variance PS .

Erez-Shamai-Zamir ’05:

Encoder subtracts αs, dithers,
and takes mod Λ.

x = [t− αs+ d] mod Λ

w E
x

s z

y
D ŵ

Decoder scales by α, removes dither, takes mod Λ, and recovers t.
Interference is cancelled.

[αy − d] mod Λ = [x+ αs− d+ z− (1− α)x] mod Λ

=
[

[t− αs+ d] mod Λ + αs− d+ z− (1− α)x
]

mod Λ

=
[

t+ z− (1− α)x
]

mod Λ
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s is interference known
noncausally to the encoder.

Assume s i.i.d. Gaussian,
very large variance PS .

Erez-Shamai-Zamir ’05:
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w E
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Dirty Gaussian Multiple-Access Channel

w1 E1
x1

s1

w2 E2
x2

s2

z

y
D ŵ1, ŵ2

Philosof-Zamir-Erez-Khisti ’11:

• Encoder 1 knows interference s1.

• Encoder 2 knows interference s2.

• Need to cancel out interference in a distributed fashion.

• Assume i.i.d. Gaussian interference with very large variance PS .
Random i.i.d. methods yield rate that goes to 0 as PS goes to
infinity.



Dirty Gaussian Multiple-Access Channel

Subtract (part of) the interference signals ahead of time:

x1 = [t1 − αs1 + d1] mod Λ

x2 = [t2 − αs2 + d2] mod Λ

Decoder removes dithers:

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + s1 + s2 + z)− d1 − d2] mod Λ

= [x1 + x2 + α(s1 + s2)− (1− α)(x1 + x2) + αz) − d1 − d2] mod Λ

=
[

t1 + t2 + (1− α)(x1 + x2) + αz
]

mod Λ

Select α = 2P/(2P +N) to obtain

R1 +R2 ≤
1

2
log

(

1

2
+

P

N

)

Maple Syrup Problem: Prove this is the best possible
.



Dirty Gaussian Multiple-Access Channel

Subtract (part of) the interference signals ahead of time:

x1 = [t1 − αs1 + d1] mod Λ

x2 = [t2 − αs2 + d2] mod Λ

Decoder removes dithers:

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + s1 + s2 + z)− d1 − d2] mod Λ

= [x1 + x2 + α(s1 + s2)− (1− α)(x1 + x2) + αz) − d1 − d2] mod Λ

=
[

t1 + t2 + (1− α)(x1 + x2) + αz
]

mod Λ

Select α = 2P/(2P +N) to obtain

R1 +R2 ≤
1

2
log

(

1

2
+

P

N

)

Maple Syrup Problem: Prove this is the best possible (or find a better
acheivable scheme).
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• Joint Decoding (Uri’s Talk)

• List Decoding (Natasha’s Talk)
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AWGN Techniques

• Superposition (Shlomo’s Talk)

• Fading

• Successive Cancellation

• Dirty Paper Coding

• Joint Decoding (Uri’s Talk)

• List Decoding (Natasha’s Talk)

• Timbit Problem: Are there are any AWGN encoding/decoding
techniques that are not available to lattice codes? That is, is there a
(simple, linear, AWGN, etc.) network where lattices are
outperformed by i.i.d. random codes?

• Outer bounds?


