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This talk will include some speculation...

with the aim of making it a bit more interactive.

Some of this will be tied to some (local) foods.

ISIT '11 Tutorial co-taught with Michael Gastpar now available at
ISIT website (and iss.bu.edu/bobak).


iss.bu.edu/bobak
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of two relays.
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e Two users want to send messages across the network with the help
of two relays.

e Decode-and-Forward: Each relay decodes one message.

e Compress-and-Forward: Relays send their observed signal to the
destination without decoding.
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e What if each relay could decode a linear equation?
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e What if each relay could decode a linear equation?

o Compute-and-Forward: One relay decodes the sum of codewords.
Other relay decodes the difference.
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2"2E possible sums of codewords.

"B codewords each.



Random i.i.d. codes are not good for computation
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2nf codewords each. possible sums of codewords.



Encoders use the same nested
lattice codebook from X1 Z
Erez-Zamir '04. t1— & l

D=V

Transmit lattice codewords:
X =t

to —{ & V:[t1+t2] mod A

X9 = to

Decoder recovers modulo sum.

[y] mod A
= [x1 + x2 + 2] mod A
=[t; +t2+ 2z mod A

= [[tl + to] mod A + z} mod A Distributive Law
= [v+z] mod A

1 P



Decoding the Sum of Lattice Codewords — MMSE Scaling

Encoders use the same nested
lattice codebook from
Erez-Zamir '04. t1—| & l

Transmit dithered codewords:
X1 = [t; +d;] mod A
Xy = [tg + d2] mod A

D—=v

to —| & V:[t1+t2] mod A

Decoder scales by «, removes dithers, recovers modulo sum.
[ay —d; — d2] mod A
= [a(x1 + %2 +z) —d; — d2] mod A
=[x1 +x2 — (1 — a)(x1 +x2) + @z — d; — dg] mod A
= |[t1 + t2) mod A — (1 — a)(x1 +x2) + az] mod A

=[v—(1—-a)(x1 +x2) + az] mod A
[ I

1
Effective Noise Nerrec = (1 — a)?2P + o?N




Effective noise after scaling is Nerrec = (1 — @)?2P + o®N.
Minimized by setting « to be the MMSE coefficient:

2P
QMMSE = N 1 2P
e Plugging in, we get
2NP
Nerrec = N 1 2P

Resulting rate is

1 P 1 1 P
= -1 = Zlog [ = + =
f=glog (NEFFEC) 9 %8 (2+ N)

What happened to the “one plus” term?




Set fine lattice density using:
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Where is the “one plus”?

Set fine lattice density using: Set fine lattice density using:
1 P 1 2P
R==1 14+ — R==1 14+ —
20g<+N> 2og<+N>
Cut out codebook at power P. Cut out codebook at power P.

1 1 P
Resulting codebook only has R 5 log (2 + >



Where is the “one plus”?

e This limitation seems inherent to nested lattice codes combined with
lattice decoding.

e Also seems inherent to any scheme that treats all codewords as “the
same” (e.g. ML decoding). Connected to decoding analysis in
Wilson-Narayanan-Pfister-Sprintson '10.

e What about MAP decoding?

e |ce Wine Problem: Prove that the sum of codewords x; + X2 can be
recovered from y = x1 + X9 + z at rate

1 P
§log <1 + N)



Where is the “one plus”?

e This limitation seems inherent to nested lattice codes combined with
lattice decoding.

e Also seems inherent to any scheme that treats all codewords as “the
same” (e.g. ML decoding). Connected to decoding analysis in
Wilson-Narayanan-Pfister-Sprintson '10.

e What about MAP decoding?

e |ce Wine Problem: Prove that the sum of codewords x; + X2 can be
recovered from y = x1 + X9 + z at rate

1 P
§log <1 + N)

Or prove that this is impossible.



e Loss is at most 1/2 of a bit. Is this such a big deal?
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e Loss is at most 1/2 of a bit. Is this such a big deal? Yes, especially
for layering.

e Consider employing a superposition of many lattice codewords.

o As the number of layers increases, the effective SNR of each layer
decreases.

e Hard to analyze layered lattice codebooks outside the high SNR
regime.

e Shows up in interference channels (e.g. Sridharan et al. '08)



What if the power constraints
are not equal?

Idea from
Nam-Chung-Lee '10:

Draw the codewords from the
same fine lattice AfNE.

Use two nested coarse lattices
A1 and A5 to enforce the
power constraints P; and Ps.
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power constraints P; and Ps.
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o)
X2
ta — & v = [t1 + t2] mod A

e Encoder 1 sends x; = [t; + d;] mod A;. Coarse lattice A; has
second moment P;.

e Encoder 2 sends xo = [t + d2] mod Ay. Coarse lattice Ay has
second moment P, > P.

o Decoder performs MMSE scaling, remove dithers, recovers mod As

sum.

1 Pl P1 1 P2 P2
Ry =31 2 Ry— 11 2
°g (P1+P2+ N) Og(P1+P2+ N)




Case Study — Hadamard Relay Network

z1 Z1R
wio] & X1 _% yi R, X1R é)ﬁn
Z3 Z2R
was] & X2 H +% y2 Ry XoR é}’wz
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e Equal rates R. H is a Hadamard matrix, HHT = K1
Upper Bound Compute-and-Forward
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Compute-and-Forward: Fading Channels

X1

Transmitters do not know t1— &1 o,

channel realization. \Kl\
X2 h Y

ty—{ & 20T

Encoders use the same nested ) D [~V
lattice codebook. hx K
: = t dA
Transmit dithered codewords: v [;W 4 e
XK
x¢ = [ty + dg] mod A tx —| €K

e Decoder removes dithers and recovers integer combination

K
VvV = [Zagtg} mod A
(=1

o Receiver can use its knowledge of the channel gains to match the
equation coefficients a, to the channel coefficients hy.



e Distributive Law also holds for integer combinations. Let a,b € Z.

[a[xl] mod A + b[x] mod A] mod A
=[x = @ax0) + 032 - Qaox)) | mod &

= [axl + bxg — aQa(x1) — bQA(Xg)] mod A
= [ax1 4 bx2] mod A

e Last step follows since since a@x(x1) and bQx(x2) are elements of
the lattice A.



e Transmit dithered codewords x; = [ty + d¢] mod A
e Decoder removes dithers and recovers integer combination

K
[y - Z agdg} mod A
/=1

K K
= Z h[X@ +z— Zazd[] mod A
4=1 1=1

K K
= Z ag(x¢ — dy) + Z(hz — ag)xg + z} mod A
S 4=1 =1

K K
= [Z a[t[] mod A + Z(hz —ap)xy + z] mod A Distributive Law
L =1 (=1

T
Effective Noise



e Effective noise due to mismatch between channel coefficients
h = [hy -+~ hg]T and equation coefficients a = [a1 - - - ax]” .

Nerrec = N + Pllh—a|?

1 P
_ L
R=5log (N+P|]h—a|\2>




Compute-and-Forward: Fading Channels — Effective Noise

e Effective noise due to mismatch between channel coefficients

h = [h1---hk]? and equation coefficients a = [a1 - - ax]”.

Nerrec = N + Pllh — a|?

1 P
|
f=glog <N+P||h—a\|2>

e Can do better with MMSE scaling.

Nerrec = @’ N + Pllah — a?

1 P
R = max - |
Xy e <a2N+P||ah - a||2>

= s N + Pl )
2 % \ VTl + P(b/]ja]? - (hTa)?)

e See Nazer-Gastpar '11 for more details.



e The rate expression simplifies in some special cases.

N + P|h|? )

R= 1log (
2 Nla|* + P(|[h[*[la]* — (ha)?)

o Integer channels: h = a.
1 1 P
R = ~log (— + —)
2 lal* N

e Recovering a single message: Set a = §,,, the mt™" unit vector.

N h% P )
N+ P Z#m h?

1
R=§log(1



Compute-and-Forward: Fading Channels — Finite Field Message

X1

Transmitters do not know wi—l & hy
channel realization. \K\
X2 h Yy
Wo— £ 2

l<— N

Encoders use the same nested (+) D [—~1u
lattice codebook. hi K
) . u= @ AyWy
Transmit dithered codewords: puet
XK
x¢ = [ty + dg] mod A WK £

e Due to Construction A, mapping t; = ¢(wy) between messages and
lattice points preserves linearity.

K K K
¢_1<|:Z agtg} mod A> = [Za(gw@} mod q = @agWg
/=1 /=1

(=1

e Digital interface that fits well with network coding.



All users pick the same nested lattice code:




Choose messages over field wy € ]F’;:




Map wy to lattice point t; = ¢(wy):

=0,

[0 N
w OnO,
=R

500
600

/2
W2—>
N

¢
¢+



Transmit lattice points over the channel:




Compute-and-Forward: Fading Channels — Illustration

Transmit lattice points over the channel:
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Lattice codewords are scaled by channel coefficients:




Compute-and-Forward: Fading Channels — Illustration

Scaled codewords added together plus noise:
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Extra noise penalty for non-integer channel coefficients:

Effective noise: N + P|h — a|?
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Scale output by « to reduce non-integer noise penalty:
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a=[2 3]

Effective noise: a?N + P|lah — a|?
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Compute-and-Forward: Fading Channels — Illustration

Decode to closest lattice point:

ah=[ald a2.1]
a=[2 3]

Effective noise: a?N + P|lah — a|?



Compute-and-Forward: Fading Channels — Illustration

Compute sum of lattice points modulo the coarse lattice:

ah=[ald a2.1]
a=[2 3]
Effective noise: a?N + P|lah — a|?



Compute-and-Forward: Fading Channels — Illustration

Map back to equation of message symbols over the field:

ah=[ald a2.1]
a=[2 3]
Effective noise: a?N + P|lah — a|?



Computation over Fading Channels — Multiple Receivers

z
X1 | y1 .
wWi—{ & —®——| D1 —~ 1y
Zo
X2 | y2 .
Wo—| & H —@®——{ D [~ 12
Zrc
x \ vk
Wi—| E — —@y—> Dk >tk

e Equal rates R. No channel state information (CSI) at transmitters.
e Receivers use their CSl to select coefficients, decode linear equation

K
u, = @ AWy
=1

e Reliable decoding possible if

R < min 11 (

N + Phg|? >
kak[7£0 2 )2)

Nlag]?* + P(|hy | lag]|* — (hi ax



Computation over Fading Channels — No CSIT

X1
wWi1—| & hy ’
AN
wa— & [P
hs
Xr
W3 — &3 3

e Three transmitters that
do not know the fading

coefficients.

e Average rate plotted for
i.i.d. Gaussian fading.

K
u= @ agwy
(=1

Averate Rate in bits per channel use

D —1

25

Relay either decodes some

linear function of messages

or an individual message.

—— Decode an Equation
—— Decode a Message
[ | — Interference as Noise

5 10 15
Transmitter Power in dB

20

25



e Receiver observes y = x1 + hxo + z.
o Recovers awy ® bws for a,b # 0.
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Channel coefficient h




e Receiver observes y = x1 + hxo + z.
o Recovers awy ® bws for a,b # 0.
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e Receiver observes y = x1 + hxo + z.
o Recovers awy ® bws for a,b # 0.
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e Receiver observes y = x1 + hxo + z.
o Recovers awy ® bws for a,b # 0.

40dB 6 —_—"_ B
e -
-
5F - i
@ ’
&
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Computation over Fading Channels — No CSIT

o Receiver observes y = x1 4+ hxs + 2.
e Recovers aw @ bws for a,b # 0.

50dB 8

Message rate R
N [6)] (2]

w

= = = Upper Bound
Compute
= = = Decode Both

L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Channel coefficient h

0 I I




Can we fill in the valleys?

e Compute-and-forward does well at rational coefficients and poorly at
irrational coefficients.

e This is the opposite of the behavior observed in “real interference
alignment” (Motahari et al. '09).

o As demonstrated in the previous talk, we can do better using
superposition. This alters the effective channel gains.

o Next talk covers this issue in depth at high SNR.

e How about finite SNR? Similar issues as encountered in static
interference channels.



L

e Receiver observes y = Z heyxy + z
(=1

Successive cancellation:

e Decode x;.
e Calculate y — h;x;.

e Receiver now has

Z hexp+z

O£



L
e Receiver observes y = Z heyxy + z
=1
Successive cancellation: Successive computation:
L
e Decode x;. e Decode Z agXy.
=1
L
e Calculate y — h;x;. e Calculate y + 3 Zasz
=1
e Receiver now has e Receiver now has
Z hexp+z L
> (he + Bag)x +z

LF#i
# (=1



e So far, we have only decoded a modulo sum of the lattice points:

[Zagtg] mod A .
)4
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o First, add back in the dithers to get the modulo sum of codewords:

[[;aetg} mod A + [zzzagdg] mod A] mod A = [;alxl] mod A



e So far, we have only decoded a modulo sum of the lattice points:
[Zagtg] mod A .
‘

o First, add back in the dithers to get the modulo sum of codewords:

szjaetg} mod A + [Xé:agdg] mod A] mod A = [zz:alxl] mod A

e Subtract this from y to expose the coarse lattice point nearest to
the real sum:

y — [Zaexe} mod A = QA(ZazXz) + Y (he—ag)x; +z
7 ; 7



Successive Computation
e So far, we have only decoded a modulo sum of the lattice points:

[Zagtg] mod A .
l

o First, add back in the dithers to get the modulo sum of codewords:

H%:aete} mod A + [%:agdg] mod A] mod A = {%:aexe] mod A

e Subtract this from y to expose the coarse lattice point nearest to
the real sum:

y — [ZQZXZ} mod A = QA<Zagx(g) + Z(hg —ag)xy + 2z
l 0

¢
o Coarse lattice point easier to decode than fine lattice point:

Q@a <QA<Z aexe) + > (he —a)xe + Z> = QA(Zane) w.h.p.
‘ ¢ ‘



Successive Computation Illustration

We have the modulo sum.

e\
ah=[ald a2.1]

a=[2 3]

Effective noise: a?N + P|lah — a|?



Successive Computation Illustration

Subtract modulo sum from the received signal.

ah=[ald a2.1]
a=[2 3]

Effective noise: a?N + P|lah — a|?



Successive Computation Illustration

Decode to the closest coarse lattice point.

e\
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Decode to the closest coarse lattice point.

e\
ah=[ald a2.1]

a=[2 3]
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Successive Computation Illustration

Now we can infer the real sum.

e\
ah=[ald a2.1]

a=[2 3]

Effective noise: a?N + P|lah — a|?



Finally, we get back the real sum:

[Z ang] mod A + QA(Z (I@X@) = Z agXy
¢ ¢ l

What can we do with this?

Change the effective channel gains and decode a new equation.

Recover some existing results on interference alignment.



Assume each receiver observes y, = hxy + sz + zp.
t#k

Decode equation of the form px; + Z qxy.
£k

Rate 1lo SNR 11 7SNR
2 %\ @+ SNRjgh —pl2 ) =2 %\ @2+ SNR/¢
(P

Plug in ¢ ~ SNRY* to get R ~ —log ).

Calculate y; — Bxk + Zx@ = (h — B)xk + z,
q ot q

By Khinchin's Theorem, residual channel coefficient allows
R~ Llog(P).



s is interference known
X -
noncausally to the encoder. wl ¢ y plew

Assume s i.i.d. Gaussian,
very large variance Ps.

Erez-Shamai-Zamir '05:

Encoder subtracts as, dithers,

and takes mod A.
x=[t—as+d] modA

Decoder scales by a, removes dither, takes mod A, and recovers t.
Interference is cancelled.

[ay —d]mod A = [x+as—d+2z— (1 —«a)x] mod A
= [[t—as+d] modA~|—as—d+z—(1—a)x] mod A

— [t-}-z—(l—a)x] mod A
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Dirty Gaussian Multiple-Access Channel

wi—| &1 l

D _)W17W2

wo—| &

S2
Philosof-Zamir-Erez-Khisti '11:
e Encoder 1 knows interference s.
e Encoder 2 knows interference ss.
e Need to cancel out interference in a distributed fashion.

e Assume i.i.d. Gaussian interference with very large variance Ps.
Random i.i.d. methods yield rate that goes to 0 as Pg goes to
infinity.



Subtract (part of) the interference signals ahead of time:

x1 = [t1 — as; +di] mod A
X9 = [tg — aso + d2] mod A

Decoder removes dithers:

[ay —d; — dg2] mod A
= [a(x1 + %2 + 81 + 82 +2) —d; —dz] mod A
=[x1 +x2+a(s;+s2) — (1 —a)(x1 +x2) + az) —d; — dz] mod A

= |t +ta+ (1 —a)(xy +x2)—|—az} mod A

Select « = 2P/(2P + N) to obtain

1 1 P
< — — I

Maple Syrup Problem: Prove this is the best possible



Subtract (part of) the interference signals ahead of time:

x1 = [t1 — as; +di] mod A
X9 = [tg — aso + d2] mod A

Decoder removes dithers:

[ay —d; — dg2] mod A
= [a(x1 + %2 + 81 + 82 +2) —d; —dz] mod A
=[x1 +x2+a(s;+s2) — (1 —a)(x1 +x2) + az) —d; — dz] mod A

= |t +ta+ (1 —a)(xy +x2)—|—az} mod A

Select « = 2P/(2P + N) to obtain
1 1 P
< — — —
R+ Ry < 210g(2+N)

Maple Syrup Problem: Prove this is the best possible (or find a better
acheivable scheme).



e Superposition (Shlomo’s Talk)
e Fading

Successive Cancellation

Dirty Paper Coding

Joint Decoding (Uri's Talk)

List Decoding (Natasha’s Talk)



AWGN Techniques
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e Quter bounds?



