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The usual Alice and Bob story ...

...from a coding point of view.



The unusal Alice and Bob story (by xkcd)



System Model

• Gaussian wiretap channel:

y = x + vb
z = x + ve

• Fast fading wiretap channel:

y = diag(hb)x + vb
z = diag(he)x + ve

• MIMO wiretap channel:

Y = HbX + Vb

Z = HeX + Ve .

• Amount of information that Eve gets should be minimized.
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Lattice Coding

• Alice uses lattice coding.

• x ∈ Λ ⊂ Cn, with

Λ = {x = Mu | u ∈ Z[i ]n}.

• For MIMO, we mean

x = vec(X ) = Mu

(holds for example for linear dispersion codes).
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Coset Encoding

• Partition
Λb = ∪2k

j=1(Λe + cj)

with Λe ⊂ Λb, c not in Λe and 2k cosets to be labelled by
s ∈ {0, 1}k .

• Once
s 7→ Λe + cj(s),

Alice randomly chooses x ∈ Λe + cj(s), or equivalently

x = r + c ∈ Λe + c.
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Coset Decoding

• xk in Cn with Voronoi cell V(xk), over a Gaussian channel
with noise variance σ2, probability of correct decision

1

(σ22π)n

∫
V(xk )

e−||u||
2/2σ2

du.

• xk = rk + ck ∈ Λb sent, the probability Pc of finding the
correct coset is (no boundary effect)

Pc =
1

(σ22π)n

∑
r∈Λe

∫
V(xk )+r

e−||u||
2/2σ2

du.
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Eve’s probability of correct decision: the Gaussian case

• Low SNR assumption for Eve, a Taylor expansion at order 0
gives∫

V(Λb)+r
e−||u||

2/2σ2
du =

∫
V(Λb)

e−||w+r||2/2σ2
dw

' vol(V(Λb))e−||r||
2/2σ2

.

• The probability of making a correct decision for Eve is then

Pc,e '
1

(2πσ2
e )n

vol(V(Λb))
∑
r∈Λe

e−‖r‖
2/2σ2

e .



Design Criteria

• Gaussian channel: maximize the secrecy function

ΘνZn(y)

ΘΛ(y)
,

where ΘΛ(y) =
∑

x∈Λ q||x||
2
.

• For extremal unimodular lattices, the maximum is reached at
y = 1 (shown for extremal even unimodular lattices by A.-M.
Ernvall-Hytönen) thanks to an explicit formula for the theta
series of unimodular lattices.
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Some more results

• Asymptotic formula for the secrecy gain for even unimodular
lattices.

• Examples of code constructions using Construction A, so far
only in small dimensions.

• Fairly open for non-unimodular lattices.
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Eve’s probability of correct decision: the fast fading case

• We can rewrite the fast fading channel, given hb, he :

y = [diag(hb)Mb]u + vb
z = [diag(he)Mb]u + ve .

• Thus

Pc,e,he =

(
1

2πσ2
e

)n

Vol(Λb)
∑
x∈Λe

n∏
i=1

|he,i | e− |he,i xi |22σ2
e

 .

• On average

P̄c,e '

(
σ2
h,e

πσ2
e

)n

Vol(Λb)
∑
x∈Λe

n∏
i=1

1(
1 + |xi |2

σ2
h,e

σ2
e

)2
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Design Criteria

• Fast fading channel:

min
Λe

∑
x∈Λe\0

1

(
∏n

i=1 |xi |2)2
.

• In the case of an algebraic lattice, this is not without recalling
Dedekind zeta functions.
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Eve’s probability of correct decision: the MIMO case

• We can rewrite the MIMO fading channel, given Hb, He :

vec (Y ) = [diag(Hb, . . . ,Hb)Mb]u + vec (Vb)

vec (Z ) = [diag (He , . . . ,He)Mb]u + vec (Ve)

• Thus
Pc,e,He '

vol(Λb)

(2πσ2
e )ntT

det(HeH
∗
e )T

∑
x∈Λe

e−||HeX ||2F /2σ2
e

• On average

P̄c,e '
vol(Λb)πnent Γnt (ne + T )

Γnt (ne)(2πσ2
e )ntT (2πσ2

He
)nent

∑
x∈Λe

det

(
1

2σ2
He

Int +
1

2σ2
e

XX ∗

)−ne−T
.
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The Alamouti Code

• Alamouti codewords:

X =

[
x1 x2

−x∗2 x∗1

]
, x1, x2 ∈ Z[i ],

• We need to study∑
x∈Λe\{0}

det (XX ∗)−ne−T =
∑

x∈Λe\{0}

1

‖x‖2(2(ne+T ))
= ζΛe (2 (ne + 2)) ,

where we recognize the Epstein zeta function of a scaled
lattice µΛ (µ > 0), defined by

ζµΛ(s) =
∑

x∈Λ\{0}

1

µ2s

1

‖x‖2s
=

1

µ2s
ζΛ(s).
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The Alamouti Code

Since x ∈ Z[i ]2 ' Z4, we have

• Λe = Z4 itself, with Epstein zeta function

ζZ4(s) = 8
(
1− 41−s) ζ(s)ζ(s − 1),

• Λe = D4, with Epstein zeta function

ζD4(s) = 3 · 42−s (2s−1 − 1
)
ζ(s)ζ(s − 1),

where ζ(s) =
∑

n>0
1
ns is the Riemann zeta function.
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Conclusion

• Approach wiretap channels from a coding point of view.

• Analysis of lattice codes in terms of probability of error.

• Works for Gaussian channels, fast and block fading channels,
as well as MIMO channels.

• Lots of unexpected exciting connections with theta series,
modular forms, and different types of zeta functions!
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