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The usual Alice and Bob story ...

...from a coding point of view.



The unusal Alice and Bob story (by xkcd)

I'M SURE YOUVE HEARD ALL ABOUT THIS
SORDID AFFAIR IN THOSE. GD3SIPY CRYPTOGRAPHIC
PROTOCOL SPECS WITH THOSE BUSYBODIES
SCHNEIER AND RIVEST, ALWAYS TAKING ALCE'S
SIDE, ALWAYS mBEUNG ME THE ATIACKER.

YES, IT’5 TRUE. | BROKE. BOB'S
PRIVATE KEY AND EXTRACTED THE
EXT OF HER MESSAGES. BUT DOES
ANYONE. REALIZE HOW MUCH 1T HURT?
/

HE SAID IT WAS NGTHING, BUT
EVERYTHING FROM THE PUBLY -
AUTHENTICATED SIGNATURES ONTHE
FILES To THE LIPSTICK HEART SMEARED,
ON THE DISK SCRE»\MFD "ALCE”

1 010N'T WANT 0 BELEVE.-
OF COURSE ON SOME LEVEL.
1 REALIZED T W5 A KNCWN -
PLAINTEXT ATACK. BUT |
COULDNT ADMIT 1T UNTIL.
_ | AW FOR MYSELT,

S0 BEFORE You S0 GUICKLY LABEL.
ME A THIRD PARTY T THE COMM-
UNICATION, JUST REMEMBER
| LOVED HIM FIRST,  WE
HAD SOMETHING AND SHE
/ TCRE |T AWAY. SHES
THE ATTACKER, NOT ME.
|

NOT EVE.
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e Gaussian wiretap channel:

Yy = X+vp
zZ = X+V,
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System Model
Gaussian wiretap channel:
Yy = X+vp
zZ = X+V,
Fast fading wiretap channel:
y = diag(hy)x + v,
z = diag(he)x + ve
MIMO wiretap channel:
Y = H X+ V,
Z = H X+ V.

Amount of information that Eve gets should be minimized.
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Lattice Coding

e Alice uses lattice coding.
e xc AC C", with

AN={x= Mu|ueZi]"}.

e For MIMO, we mean
x = vec(X) = Mu

(holds for example for linear dispersion codes).



Coset Encoding

e Partition .
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with Ae C Ap, € not in Ae and 2% cosets to be labelled by
s {0,1}%.



Coset Encoding

e Partition .
/\b = Ujgzl(/\e + CJ')

with Ae C Ap, € not in Ae and 2% cosets to be labelled by
s {0,1}%.
e Once
s— Ne + Cj(s)s

Alice randomly chooses x € A + ¢j(s), or equivalently

x=r+ceN.+c.



Coset Decoding

e x, in C" with Voronoi cell V(x,), over a Gaussian channel
with noise variance o2, probability of correct decision
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Coset Decoding

e x, in C" with Voronoi cell V(x,), over a Gaussian channel
with noise variance o2, probability of correct decision

1 / —lul2/20°
— e du.
(0-227‘-)” V(Xk)

e Xx = ri + ¢, € \p sent, the probability P, of finding the
correct coset is (no boundary effect)

1 2 2
Pe= ——5— / e luIlF/20% gy,
(0-2277-) rez/\:e V(xk)+r



Eve's probability of correct decision: the Gaussian case

e Low SNR assumption for Eve, a Taylor expansion at order 0
gives

/ eIl /207 gy — / oIl 20 g
V(Ap)+r V(Ap)

~  vol(V(Ap))eIIMP/20%,

e The probability of making a correct decision for Eve is then

I’E/\e

(2)



Design Criteria

e Gaussian channel: maximize the secrecy function

Oyzn (Y)
Oaly)

where Op(y) = er/\ q||x||2.



Design Criteria

e Gaussian channel: maximize the secrecy function

Oyzn (Y)
OA(y)

where Op(y) = er/\ q||x||2.

e For extremal unimodular lattices, the maximum is reached at
y = 1 (shown for extremal even unimodular lattices by A.-M.
Ernvall-Hytonen) thanks to an explicit formula for the theta
series of unimodular lattices.



Some more results
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Some more results

e Asymptotic formula for the secrecy gain for even unimodular
lattices.

e Examples of code constructions using Construction A, so far
only in small dimensions.

e Fairly open for non-unimodular lattices.



Eve's probability of correct decision: the fast fading case

e We can rewrite the fast fading channel, given hy, he:

y [diag(hp) Mp]u + vp
z = |[diag(he)Mplu + ve.
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Eve's probability of correct decision: the fast fading case

e We can rewrite the fast fading channel, given hy, he:

y = [diag(hp)Mplu+ vy

z = |[diag(he)Mplu + ve.
e Thus |
1 n n | Pe,i%i
Peane = (5752 ) V) ST (e =

xENe i=1
e On average

2 n n
_ The 1
Pee = <M2> Vol(Ap) > T] - >2.

e xENe i=1 <1 4 ’Xi|2 Ohe

o
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Design Criteria

e Fast fading channel:

m|n Z

he xE/\e\O =1 ‘X" )




Design Criteria

e Fast fading channel:

m|n Z

Ae xe/\e\o - 1\x,] )

e In the case of an algebraic lattice, this is not without recalling
Dedekind zeta functions.



Eve's probability of correct decision: the MIMO case

e We can rewrite the MIMO fading channel, given Hp, He:

vec(Y) = [diag(Hp,...,Hp)Mp|u+ vec(Vp)
vec(Z) = |[diag(He,...,He) MpJu + vec(Ve)

e Thus
(2ma2)nT

XG/\e

e On average

_ Vol(Ap)r™e™ [y (ne + T)
Pece =~ det
’ r,,t(ne)(27raz)"fT (2ma3, Jren: Z

x€ENe

I(A
Pe.e . ™ Md t(HeH?) Z o~ lIHeX|12/202

1

2

T30z

e
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e MIMO channel:

Design Criteria

min Z et

€ xENA\O

1




The Alamouti Code

e Alamouti codewords:
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The Alamouti Code

e Alamouti codewords:

X1 X2 .
X = e o |y X, x € ZI,
—X3 X

e We need to study
*\—ne— T 1
Z det (XX™) = Z HXHQ(QW = (A (2(ne +2))
xeN\{0} xeN\{0}

where we recognize the Epstein zeta function of a scaled
lattice A (1 > 0), defined by

GaS) = Y 3 = 5 als)

1 2s 2s
cenvgoy ©7 X z



The Alamouti Code
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The Alamouti Code

Since x € Z[i]?> ~ Z*, we have

e Ao = Z* itself, with Epstein zeta function

Cue(s) =8 (1 —47°) ((s)¢(s — 1),

o Ao = Dy, with Epstein zeta function

Cpu(s) =3-427° (271 = 1) ((s)¢(s — 1),

where ((s) = > ,-0 & is the Riemann zeta function.
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Conclusion

Approach wiretap channels from a coding point of view.
Analysis of lattice codes in terms of probability of error.

Works for Gaussian channels, fast and block fading channels,
as well as MIMO channels.

Lots of unexpected exciting connections with theta series,
modular forms, and different types of zeta functions!



Thanks




