Further Comments on Lattices for Gaussian Relay Networks

Yiwei Song, Natasha Devroye

Review on "Lattices for Gaussian Relay Networks"

Lattice codes outperform Random codes

List Decoding

• When coding rate is above capacity, decoder can decode a list of possible codewords/messages rather than the unique one.

What is a lower bound on the size of this list?

How about:

UNVERSITY OF LLINGS ATCHEORS and Computer Engineering COLLEGE OF ENGINEERING

List Decoding May Be Important

• Multiple links between source and destination.

 $C \ge C_{red}$: list decoding for each link? for each node?

List Decoding Is Interesting

List Decoding for Gaussian Multi-hop Channel

- When $R > \min(C_1, C_2)$, destination can decode a list of possible codewords of size ?
- A possible guess can be $2^{n(R-\min(C_1,C_2))}$ since we can always bin/compress the source to be of rate $\min(C_1,C_2)$

Broadcast nature of wireless

List Decoding for Gaussian Multi-hop Channel

• Case 1: $C_1 > R > C_2$

• Case 2:
$$C_1 < R < C_2$$

List Decoding for Gaussian Multi-hop Channel

• What about Case 3: $R > \max(C_1, C_2)$?

Gaussian Two-Way Multi-Relay Channel

 In AWGN two-way communications scenarios, can two streams flow at the same time without interfering with each other?

Applying Lattices in TW-MR Channel: The Possibility

• With side information w_1/w_2 , $w_1\oplus w_2$ is enough to determine w_2/w_1 .

MAC phase: lattice codes. BC phase: random codes.

• Every relay needs to exploit its own side information.

MAC phase: lattice codes. BC phase: lattice codes.

Saturday, August 20, 2011

Applying Lattices in TW-MR Channel: The Difficulty

• To apply lattice codes in BC phase, the difficulty is power asymmetry.

assume $P_1 \ge P_2$

- Relay decodes $T = (t_1 + t_2 Q_2(t_2 + U_2)) \mod \Lambda_1$, re-encodes it and broadcasts it. Is there an encoding/permutation function f(T) such that , for any given t_1 , f(T) is a good lattice which occupies the whole space of $\mathcal{V}(\Lambda_1)$ [Nam, Chung, Lee, 2010]
- Notice for any given t_1 , T is a good lattice which is spread over $\mathcal{V}(\Lambda_2)$