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Channel Coding: Interference
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Three User: A very good place to start

Z,
1 V
X 1(m1) \ > Yl m,
hs; h21 Z;
hz2 .
X2(my) 1 Y — m,
h32 7
T, v
X3(ms3) 1 —> Y3 —> m,

Three User Interference channel — What is the capacity region?
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Lattice codes vs Single-letterized Uniform/Gaussian

Random codes

@ sum of signals/lattices
@ Fewer distinct sums of lattice codewords than random points

in n-D space
6 o o 63 o o o o o o
L ° e
4 B RS f800§c%%000 4 o o o o o o
o8 G gbo&s(gf’& 8o o
O o
2 009 %(%%og@o Odg%oq’%’gg 2 a a o o o o
T BB g G806t
& o & o 3 %0 o % o
o o ) @ooo@g’ @9 00 a[go
0 D0 Ogy, @O@Oé’o @@9 o o o o o o
Oﬁam%o@o%)o@ S @0 %02,
0 QY @@ 000¢D o° @ B
2 & 28 0@0200 o s 2 o o o o o o
s & wg (e
S ° ° SBg %FOOOO&WO 4 o o o o o o
o & 0® o
& O
3 -4 -2 0 2 4 6 i 4 -2 0 2 4 6
(a) Random - 108 points (b) Lattice - 49 points

Figure: Sum of two sets of vectors in 2-D
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Lattice Preliminaries

Additive noise translates lattice point

e A={r=2G:2€Z",GeR"™"}

e Quantization - Qa(z) = argmin,.c ||z — 7|

e Fundamental Voronoi region - Vo = {x € R" : Q — A(z) = 0}
e xmodA =z — Qx(z)

6/39



Very Stong Interference: A 2-level Matryoshka Doll

7 Lattice A

\ Shaping Region

(Power P)

Voronoi Region of Lattice

al

Works only for all cross gains h;; = Q(v/P) and rationally related
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More general: Multilevel Matryoshkas!

If all cross-channel gains are "a”, then

If a®> > 2, then sum rate > 3log 52 SaT—a? log SNR

| 5\

Theorem

If a®> < 1/3, then sum rate > 3;238+22; " E ; log SNR

\
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Dead End?

@ Any improvements possible?

@ Yes, using a transformation to a noiseless n-dimenstion
channel

The central dogma of /attices:

o Let X1, X5, X3 all be lattice points
e Y1 = X1 + ho1 X + h31 X3 + Ny is a corrupted lattice point.

o Recover Z1 = X1 + ho1 X9 + h31 X3+ N1. Now, Y7 to Z1 is a
discrete memoryless noiseless channel.

Use Algebra and geometry to find codebooks to maximize rate

@ One dimensional noisy to n-dimensional noiseless
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..For emphasis... repeat!

If £ is the subset of lattice points ("input alphabet”, not
codebook)

Then output alphabet at Receiver 1 is £ + ho1 £ + h31 L

Real multiplication and Minkowski-sum

Similar alphabets at other receivers

Use Algebraic (geometric) coding to design maximally
separable codebook, vectors of lattice points
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Is this Useful?

All cross-gains are a for simplicity, then symmetric rate of

1 | log(K — 1)
loga

5 >10gSNR

is achievable, where K is users in system.

@ Use a code, not necessarily linear, over the lattice
@ For example, symbol alignment can be superposed on lattices
e Rate = (rational DoF) *log SNR
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Multiterminal Source Coding
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Multiterminal Source Coding Through a Relay

Sp = 5"+ Ny
—> ENCODER 1

ENCODER 3

R3

DECODER

S'n

53 = 8™+ Ny
——>| ENCODER?2 ("R,

What are efficient coding schemes?
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Relays in Lossy Source Coding

Simple Relay Model
Relay only needs to forward message from Encoder 1

s Rl RQ S"
—> ENCODER 1 > ENCODER 2 > DECODER [—>

Relays with Side Information
Tension between whether relay should forward message from
Encoder 1 or decode and compress desired function

Sp = 5"+ N} R Ry gn
—> ENCODER 1 > ENCODER 2 > DECODER |—>»

Sr_’;l = 8n 4 NQ"
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Multiterminal Source Coding

Quantize and bin architecture based on random codes is optimal

for

@ Quadratic Gaussian CEO Problem - [Oohama],

[PrabhakaranTseRamchandran]

@ Gaussian Two Terminal Source Coding -

[WagnerTavildarViswanath]

Sp = 8"+ Ny

—> ENCODER 1

Sp = §" + Ny

ENCODER 2

Ry

DECODER

an

Are random codes optimal for multiterminal source coding through

relays?
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System Model

Sp = 5"+ Ny
—> ENCODER 1

85 =S" + Ny
— [ ENCODER 2

Ry

ENCODER 3

DECODER

® S~ N(0,0%), N1 ~N(0,0%,), Na ~N(0,0%,)
e Distortion constraint - » " | E [(SZ - 5”1)2} <D

e Find the set of all achievable tuples (R;, R, R3, D)

gn
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How to integrate incoming messages?

Sy =S" + Ny

——>{ ENCODER 1| &

ENCODER 3

R3

DECODER

Sp = 8"+ Ny
—>| ENCODER2 ("R,

Forward messages

Reconstructing linear function requires further compression

Compute and forward - Directly compute linear function of

codewords and forward

Compress and forward - Estimate desired linear function and

compress
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Main Results

Given a distortion constraint D

Sy = 8"+ Ny
—> ENCODER 1

Sé! _ SH + Nél
— > ENCODER 2

R

Ry

ENCODER 3

R3

DECODER

gn

e for symmetric noise variances, compute and forward achieves
optimum R; + Ry and within 1/2 bit of optimum R3

@ can further reduce R3 at at cost of higher Ry + Rs using

compress and forward
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Compute and Forward - Lattice codes

e [E[S|S1, S2] = 151 + P25 is the linear function to be

compressed

@ Ay, Aoy, Ao are ‘good’ lattices with suitable nesting structure

BiSY + 21

Quantization

—> Q")
B255 + 23
—Qn,, () mod Az,
Quantization Binning

Ry

R,
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Compute and Forward - Lattice codes

e 77,7y ~ Unif(Vy) - dithers for quantization
@ Ay, A2; - Quantization at Encoder 1 and 2, R; = I(S1;Uy)
@ Ay - Binning to achieve Ry = I(Ss; Us|Uy)

BiSY + 21

Quantization

—>»{Qx, (")

B284 + Z3

——>(Qn, ()

> mod A22

Quantization

Binning

Ry

R,
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Compute and Forward - Lattice codes

@ A3 - ‘good’ channel coding lattice
@ A3 - useful for analysis, not used for quantization

@ Lattice points summed up at relay to compute function

B Sy + 77

—>Qn, ()N

Decode
QA21 (3255, + Zé') mod A3

8253 + 23

—>(Qr,, (+) > mod Agy ["Rs l T

Qu, (B1ST + Z7) + Qu,, (8255 + Z3)
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Compute and Forward - Lattice codes

@ A3 - 'good’ channel coding lattice

@ Ajg - useful for analysis, not used for quantization

@ Lattice points summed up at relay to compute function

3253 + 25
— >

GST + 27
—>Qx, (1)
Qs () > mod Ago

Ry

gn

Decode
Qna (8255 + Z3)

mod Az

i

T

Qa, (B1ST + Z7) + Qu, (3288 + Z3)

Linear
Estimate

< mod Az

e

Zp+ 23
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Compress and Forward - Lattice codes

@ Ay - used for dithered quantization at Encoder 3

@ Random or lattice codes achieve same performance here

@ Compute the sum estimate and then compress

0253 + Z3
—>

BSY + Z1

—>Qx, ()

>

mod Agy

Ry

Decode
Qs (8253 + Z3)

|
@—)

QA4 ()

T

Qa (B1ST + Z7) + Qay, (258 + Z3) — Z7 — Z3
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Compress and Forward - Lattice codes

@ A4 - used for dithered quantization at Encoder 3

@ Random or lattice codes achieve same performance here

o Compute the sum estimate and then compress

BaSy + 73
%

Sy + 27

—>Qa, (")

Qns, (¢

~

> mod Ags

Ry

Ry

Decode
Qs (8255 + Z3)

l Z3

®—> Q. ()

T

Qi (B1ST + Z1') + Quo (8255 + 25) = 21 = Z3

gn

Linear
Estimate

<O

P
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Outer Bound on (Ry, R2)
@ Allow Encoder 3 and Decoder to cooperate
@ (R1, R2) bounded by rate region of the CEO problem

Sp=8"+ N R
—>{ ENCODER 1 N Ry = oo
qn
ENCODER 3 >| DECODER [—>
Sy =S+ N3
——>| ENCODER2 [R,
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Lower Bound on Rj3

@ Allow Encoder 1, 2 and 3 to cooperate

@ R3 bounded by rate distortion function of remote source

Sy = 5"+ Ny .
——>| ENCODER 1 1=

R qn
ENCODER 3 >| DECODER |[—>»

Sp = 8"+ Ny
—>| ENCODER2 ("R,

I
3
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Compute and Forward
@ (R1, R2) achieve sum rate of CEO problem
@ Rs is within 1/2 bit of optimum for symmteric case
2 _ 2 _ 2
Ny = 9N, =ON
Compress and Forward
@ (R1, R2) achieve higher than sum rate of CEO problem

@ Rj is lower than the rate achievable by compute and forward
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Numerical Results - Sum Rate R; + Ry + R3

2 __ 2 _
05—10,0]\,1—

Sum Rate

e Compute and forward is within 1/2 bit of total sum rate
@ Compress and forward achieves a smaller sum rate for higher

distortions

7 = Compress and Forward| |

2 _
UNZ_

T T
Lower Bound
= Compute and Forward

Distortion
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Joint (Source/Channel) Settings

Setting one: Gaussian broadcast channels with Gaussian sources

Setting two: Linear functions over Gaussian MACs
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Broadcast with Correlated Sources

Receiver 1

Transmitter

Receiver 2

Figure: Correlated data over a broadcast channel with minimum
distortion
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Mathematical Setup

Decoder 1 —>S? D1

n

1
—> Encoder
n
S5
Decoder 2 gg‘ D2

Figure: Correlated Gaussian sources over a Gaussian channel
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Main Results

A hybrid coding scheme = "analog” dirty paper coding.
Hybrid = part lattice 4+ part analog for one source

@ independent sources = optimal
@ correlated sources

e uniformly better than separation
e Better than all analog beyond a threshold SNR
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Hybrid Coding

U™ ~ Unif(Vg)

n

—P—®

n
6;1

Lattice A
Voronoi region Vg

mod A

Xil |: : Xxn
A

5
r g

>

X™ = n[ST + BvS5 + U™l mod A + ~S3
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Numerical Comparison

Comparison of distortion at Receiver 1

Distortion

— Hybrid
Separation
Uncoded

L L
0 12

L L L L
0 2 4 6 8 1
SNR (in dB)

All schemes achieve the
same distortion at Receiver 2

Figure: Hybrid can do uniformly better, and is optimal if independent

sources
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Setting two: Linear Functions over a MAC

g \ Noi
@ —>»| Encoder 1 ise
\ PP

@ —> Encoder 2

@ Characterize optimal distortion in linear functions

g o
Decoder [—>» '\

@ Challenge - Source channel separation not optimal
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System Model

e (51,5) ~N(0,X) where X = [

ST
_}

Encoder 1

55
_>

Encoder 2

n

X3

Svn
Decoder
2 2
o°  po
1 > 0
po?  o? ] p=

@ Power constraint P at Encoder 1 and 2, Z ~ N/ (0, N)

@ Linear function S3 = S7 + ¢Sy

@ Squared error distortion in function - 7112?:1 E [(Sgi — 5’31-)2}

What is the smallest distortion in the function that can be

achieved?
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Main Result

If SNR > -3 dB, then a lattice coding scheme achieves a distortion

@ within 1 bit of the optimal distortion when ¢ € [—1, —p]

@ within 2 bits of the of the optimal distortion when
ceR \ [_17 _p]
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Performance Comparison

0%=20, P=10,

T
Lattice 1
450 Uncoded B

4t 1 ]

Distortion gap for the Difference
&
~

Comparison of Achievable Strategies and Lower Bound

. . . .
0 0.2 0.4 0.6 0.8 1
Correlation Coefficient between Sources

N=05
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Conclusion

@ Structure plays a role across domains

@ Interference: Signals naturally mix, and lattices curtail the
cardinality growth of interference

@ Source Coding: Lattices enable more efficient representations
of functions of source

@ Joint: Both advantages mix
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