Mitigating Interference with Integer-Forcing Architectures

Jiening Zhan

Joint Work with Uri Erez, Michael Gastpar, Bobak Nazer

BIRS Workshop August 18th 2011

MIMO Channel with External Interference

- M x M MIMO with K dimensional external interference
- Each antenna encodes an independent message (or data stream) at rate R/M using power P
- Channel state information is known only at the receiver

Receiver Architectures

- Previously proposed Integer-Forcing Linear Receiver for MIMO channels without external interference [Zhan-Nazer-Erez-Gastpar ISIT '10]
- Show that It can be used to mitigated external interference

Traditional Linear Receivers

- Project received signal: ỹ = $\mathbf{B}\mathbf{y}$
- Each stream $\widetilde{\mathcal{Y}}_m$ is fed into a separate decoder that attempts to recover a message \mathbf{w}_m

Traditional Linear Receivers

- Null Interference: Transmit M-K data streams and then project output unto space orthogonal to external interference
- Treat Interference as Noise: Transmit M streams and then use Decorrelator or linear MMSE estimator

Integer-Forcing Architecture

- Project received signal: $\tilde{\mathbf{y}} = \mathbf{B}\mathbf{y}$
- Each stream $ilde{y}_m$ is fed into a separate decoder that attempts to recover an equation \mathbf{u}_m
- Equations can be digitally solved for the original messages
- Compute-and-Forward is used to decode equations [Nazer-Gastpar IT '11]

Integer-Forcing Architecture

- ullet Freedom to choose ${f A}$ to be any full rank integer matrix
- Choosing ${f A}={f I}$ reduces to traditional linear receivers

Choosing Equations

$$\sigma_{\text{EFFECTIVE,m}} \leq \lambda_{\text{MAX}}^2 \|\mathbf{a}_m\|^2 + \|\tilde{\mathbf{J}}^T \mathbf{a}_m\|^2 INR$$

Mitigating Interference

After Preprocessing:

Null Interference

 x_1

- One Data Stream
- No External Interference after preprocessing

Treat
Interference as
Noise

- Two Data Streams
- External Interference Mostly Unmitigated

Integer-Forcing

- Two Linear combinations of Data Streams
- External Interference Mostly Mitigated

2% Outage Rate

$$\alpha = \frac{\log INR}{\log SNR}$$

$$\alpha = 0.2$$

Generalized Degrees of Freedom

Theorem

Consider the M x M MIMO channel with K dimensional Interference.

Let $\alpha = \frac{\log INR}{\log SNR}$. The integer-forcing linear receiver achieves the generalized degrees of freedom:

$$d_{\text{INT}} = M - K\alpha$$

If $\mathbf{H} \in \mathbb{R}^{M \times M}$ and $\mathbf{J} \in \mathbb{R}^{M \times K}$ are such that the rows of $\mathbf{H}^{-1}\mathbf{J}$ are rationally independent.

$$d_{\text{JOINT}} = M - K\alpha$$

$$d_{\text{MMSE,M-K}} = M - K$$

$$d_{\text{MMSE,M}} = M - M\alpha$$

Generalized Degrees of Freedom

Generalized Degrees of Freedom

Transmit M – K Data Streams Null Interference Transmit M Data Streams
Treat Interference as Noise

Integer-Forcing

$$d = M - K$$

$$d = M(1 - \alpha)$$

$$d = M - K\alpha$$

Proof Ideas

• Choose $\mathbf{a}_1 \cdots \mathbf{a}_M$ to minimize:

$$\max_{m} \lambda_{\text{MAX}}^{2}(\mathbf{H}^{-1}) \|\mathbf{a}_{m}\|^{2} + \|\tilde{\mathbf{J}}^{T}\mathbf{a}_{m}\|^{2} INR$$

Find M linearly independent integer vectors $(\mathbf{q}_1, \mathbf{p}) \cdots (\mathbf{q}_M, \mathbf{p}_M)$ $\in \mathbb{Z}^{M-K} \times \mathbb{Z}^K$ that minimizes:

$$\|\mathbf{q}_m\|^2 + \|\mathbf{X}\mathbf{q}_m - \mathbf{p}_m\|^2 INR$$

where $\mathbf{X} \in \mathbb{R}^{K \times (M-K)}$

Dirichlet's Approximation Theorem

In the scalar case, the tradeoff is:

$$|q| \le Q \quad \|qx - p\| \le \frac{1}{Q}$$

Proof is by Pigeon hole principle

Lemma (Dirichlets)

For any $\mathbf{X} \in \mathbb{R}^{K \times (M-K)}$ and any $Q \in \mathbb{Z}_+$, there exists a $(\mathbf{q}, \mathbf{p}) \in \mathbb{Z}^{M-K} \times \mathbb{Z}^K \setminus \mathbf{0}$ with $\|\mathbf{q}\|_{\infty} \leq Q$ such that

$$\|\mathbf{X}\mathbf{q} - \mathbf{p}\| \le \frac{1}{Q^{\frac{M-K}{K}}}$$

What happens with multiple linearly independent approximations?

Diophantine Approximations

In the scalar case, the tradeoff becomes:

$$|q| \le \Theta\left((\log Q)^2 Q\right) \qquad ||qx - p|| \le \Theta\left(\frac{(\log Q)^2}{Q}\right)$$

Proof uses Khintchine, Minkowski and Lagrange Multipliers

Lemma

Let $\mathbf{X} \in \mathbb{R}^{K \times (M-K)}$ where $|x_{i,j}| \leq 1$ and $x_{i,j}$ are rationally independent for all i, j. There exists an $Q' \in \mathbb{N}$ such that all for Q > Q', there exist M linearly independent integer vectors $(\mathbf{q}_1, \mathbf{p}), \cdots (\mathbf{q}_M, \mathbf{p}_M) \in \mathbb{Z}^K \times \mathbb{Z}^{M-k}$ such that

$$\|\mathbf{X}\mathbf{q}_m - \mathbf{p}_m\| \le \frac{C(\log Q)^2}{Q^{\frac{M-K}{K}}} \quad \|\mathbf{q}_m\|_{\infty} \le CQ(\log Q)^2$$

where C is a constant that is independent of Q.

Some Connections

- Lattice Reduction: Yao-Wornell '02, Taherzadeh-Mobasher-Khandani '07, Jalden-Elia '09
- Lattices for AWGN Capacity: Erez-Zamir '04
- Lattices for DMT: El Gamal-Caire-Damen '04
- Practical compute-and-forward: Feng-Silva-Kschischang '10, Hern and Narayanan '11, Ordentlich and Erez '10, Osmane and Belfiore '11
- The Degrees of Freedom of Compute-and-Forward: Niesen-Whiting '11