Heat kernel and mixing time convergence for sequences of simple random walks on graphs

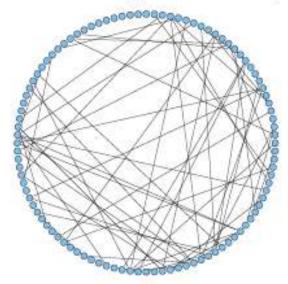
FOUNDATIONS OF STOCHASTIC ANALYSIS
BANFF INTERNATIONAL RESEARCH STATION
18-23 SEPTEMBER 2011

David Croydon (University of Warwick)

Based on joint work with B. M. Hambly (Oxford) and T. Kumagai (Kyoto)

CRITICAL ERDŐS-RÉNYI RANDOM GRAPH

G(N,p) is obtained via bond percolation with parameter p on the complete graph with N vertices. We concentrate on critical window: $p = N^{-1} + \lambda N^{-4/3}$. e.g. N = 100, p = 0.01:



All components have:

- size $\Theta(N^{2/3})$ and surplus $\Theta(1)$ [Erdős-Rényi], [Aldous],
- diameter $\Theta(N^{1/3})$ [Nachmias, Peres].

Moreover, asymptotic structure of components is known [Addario-Berry, Broutin, Goldschmidt].

COMPONENT MIXING TIMES

For a component C, let $(X_t^C)_{t\geq 0}$ be the corresponding discrete-time simple random walk.

The invariant probability measure for $X^{\mathcal{C}}$ is given by

$$\pi^{\mathcal{C}}(\{x\}) \propto \deg(x).$$

The mixing time of $X^{\mathcal{C}}$ is given by

$$t_{\mathsf{mix}}(\mathcal{C}) := \inf \left\{ t \geq 0 : \sup_{x \in \mathcal{C}} \left\| \mathbf{P}_x^{\mathcal{C}}(X_t^{\mathcal{C}} = \cdot) - \pi^{\mathcal{C}}(\cdot) \right\|_{TV} \leq 1/8 \right\}.$$

The mixing times of critical random graph components are $\Theta(N)$ in probability [Nachmias, Peres].

CONVERGENCE OF MIXING TIMES

Suppose $t_{mix}(C_1)$ is the mixing time of the largest component of G(N,p) in the critical window, can we prove that

$$N^{-1}t_{\mathsf{mix}}(\mathcal{C}_1)$$

converges in distribution?

Plan:

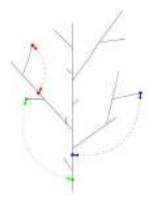
- Recall metric space scaling limit \mathcal{M}_1 .
- Construction of diffusion on M₁.
- Random walk scaling limit result.
- Convergence of mixing times.
- Other examples of mixing time convergence.

CRITICAL RANDOM GRAPH SCALING LIMIT [Addario-Berry, Broutin, Goldschmidt]

The random metric space scaling limit \mathcal{M}_1 of the largest component of the critical random graph is defined by:

- 1. Choosing a random compact real tree $\tilde{\mathcal{T}}$.
- Gluing a random, but finite, number of pairs of points together.

Picture produced by Christina Goldschmidt.



We will let $\phi: \tilde{T} \to \mathcal{M}_1$ be the natural quotient map induced by the gluing of pairs of vertices of \tilde{T} .

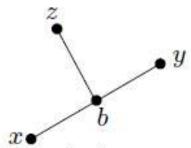
BROWNIAN MOTION ON REAL TREES

Let $(\mathcal{T}, d_{\mathcal{T}})$ be a compact real tree, and $\mu^{\mathcal{T}}$ be a Borel measure on \mathcal{T} with full support.

 $X^{\mathcal{T}} = (X_t^{\mathcal{T}})_{t \geq 0}$ is a Brownian motion on $(\mathcal{T}, d_{\mathcal{T}}, \mu^{\mathcal{T}})$ if it satisfies:

- Strong Markov diffusion.
- Reversible, invariant measure μ^{T} .
- For $x, y, z \in \mathcal{T}$,

$$P_z(\tau_x < \tau_y) = \frac{d_{\mathcal{T}}(b(x, y, z), y)}{d_{\mathcal{T}}(x, y)}.$$



- Mean occupation density when started at x and killed at y, $2d_{\mathcal{T}}(b(x,y,z),y)\mu^{\mathcal{T}}(dz).$

RESISTANCE FORM CONSTRUCTION

"Resistance, $d_{\mathcal{T}} \leftrightarrow \mathsf{Electrical}$ energy, $\mathcal{E}_{\mathcal{T}}$ "

[Kigami] \exists a symmetric, bilinear form $(\mathcal{E}_{\mathcal{T}}, \mathcal{F}_{\mathcal{T}})$ satisfying

$$d_{\mathcal{T}}(x,y)^{-1} = \inf\{\mathcal{E}_{\mathcal{T}}(f,f): f(x) = 1, f(y) = 0\},\$$

for $x \neq y$. Moreover,

$$(\mathcal{E}_{\mathcal{T}}, \mathcal{F}_{\mathcal{T}} \cap L^2(\mathcal{T}, \mu^{\mathcal{T}}))$$

is a conservative, irreducible, local, regular Dirichlet form, for any Borel measure $\mu^{\mathcal{T}}$ on \mathcal{T} with full support.

We can subsequently define a corresponding Markov process $X^{\mathcal{T}}$, and it is possible to check that this is Brownian motion on $(\mathcal{T}, d_{\mathcal{T}}, \mu^{\mathcal{T}})$.

FUSING RESISTANCE FORMS

Suppose \mathcal{M} is obtained by gluing together a finite number of pairs of vertices of \mathcal{T} , and $\phi: \mathcal{T} \to \mathcal{M}$ is the natural quotient map.

We define a quadratic form on the glued space by setting

$$\mathcal{E}_{\mathcal{M}}(f,f) := \mathcal{E}_{\mathcal{T}}(f \circ \phi, f \circ \phi),$$

for any $f \in \mathcal{F}_{\mathcal{M}}$, where

$$\mathcal{F}_{\mathcal{M}} := \{ f : \mathcal{M} \to \mathbb{R} : f \circ \phi \in \mathcal{F}_{\mathcal{T}} \}.$$

 $(\mathcal{E}_{\mathcal{M}}, \mathcal{F}_{\mathcal{M}})$ is a local, regular Dirichlet form on $L^2(\mathcal{M}, \mu^{\mathcal{M}})$, where $\mu^{\mathcal{M}} := \mu^{\mathcal{T}} \circ \phi^{-1}$. Thus, there is a corresponding Markov diffusion $X^{\mathcal{M}}$, which we call Brownian motion on \mathcal{M} .

BROWNIAN MOTION ON \mathcal{M}_1

Using the above construction, for almost-every realisation of \mathcal{M}_1 , the metric space limit of $N^{-1/3}\mathcal{C}_1$, we can define a Brownian motion $X^{\mathcal{M}_1}$, and it is possible to check that

$$\left(N^{-1/3}X_{\lfloor tN\rfloor}^{\mathcal{C}_1}\right)_{t\geq 0} \to \left(X_t^{\mathcal{M}_1}\right)_{t\geq 0},$$

in distribution in both a quenched (for almost-every environment) and annealed (averaged over environments) sense. Here, both X^{C_1} and X^{M_1} are started from a distinguished vertex.

The precise topology under which this result is obtained is a generalised Gromov-Hausdorff topology for processes on compact length spaces.

Proof uses restriction to finite line-segment subgraphs.

FROM RANDOM WALK TO MIXING TIME CONVERGENCE

First we check convergence of transition densities:

$$q_{\lfloor tN \rfloor}^{N}(\rho, x_N) \approx \frac{\mathbf{P}\left(X_{\lfloor tN \rfloor}^{C_1} \in B(x_N, \varepsilon N^{1/3})\right)}{\pi^{C_1}(B(x_N, \varepsilon N^{1/3}))} \to \frac{\mathbf{P}\left(X_t^{\mathcal{M}_1} \in B(x, \varepsilon)\right)}{\pi^{\mathcal{M}_1}(B(x, \varepsilon))} \approx q_t(\rho, x).$$

where $N^{-1/3}x_N \to x$ as $N \to \infty$ [C, Hambly]. Then

$$t_{\mathsf{mix}}(\mathcal{C}_1, \rho) := \inf \left\{ m > 0 : \|q_m^N(\rho, \cdot) - 1\|_1 \le 1/4 \right\}$$

 $\approx N \inf \left\{ t > 0 : \|q_t(\rho, \cdot) - 1\|_1 \le 1/4 \right\}$
 $=: Nt_{\mathsf{mix}}(\mathcal{M}_1, \rho).$

In particular, we can rigourously establish

$$N^{-1}t_{\mathsf{mix}}(\mathcal{C}_1,\rho) \to t_{\mathsf{mix}}(\mathcal{M}_1,\rho).$$

SPECTRAL GROMOV-HAUSDORFF DISTANCE

For compact metric spaces F, F' equipped with Borel probability measures π, π' and jointly continuous heat kernels q, q', define for a compact time interval $I \subset (0, \infty)$,

$$\Delta_{I} \left((F, \pi, q), (F', \pi', q') \right)$$

$$:= \inf_{Z, \phi, \phi', \mathcal{C}} \left\{ d_{H}^{Z}(\phi(F), \phi'(F')) + d_{P}^{Z}(\pi \circ \phi^{-1}, \pi' \circ \phi'^{-1}) \right.$$

$$+ \sup_{(x, x'), (y, y') \in \mathcal{C}} \left(d_{Z}(\phi(x), \phi'(x')) + d_{Z}(\phi(y), \phi'(y')) \right.$$

$$+ \sup_{t \in I} \left| q_{t}(x, y) - q'_{t}(x', y') \right| \right) \right\}.$$

This defines a separable metric on (equivalence classes of) triples of the form (F, π, q) . cf. work on Riemannian manifolds of [Bérard, Besson, Gallot], [Kasue, Kumura].

GENERAL MIXING TIME CONVERGENCE THEOREM

Suppose that, for any compact interval $I \subset (0, \infty)$,

$$\left(\left(V(G^N),d_{G^N}\right),\pi^N,\left(q_{\gamma(N)t}^N(x,y)\right)_{x,y\in V(G^N),t\in I}\right)$$

converges to

$$((F, d_F), \pi, (q_t(x, y))_{x,y \in F, t \in I})$$

in a spectral Gromov-Hausdorff sense, then $t_{mix}(F) \in (0,\infty)$ and

$$\gamma(N)^{-1}t_{\mathsf{mix}}(G^N) \to t_{\mathsf{mix}}(F).$$

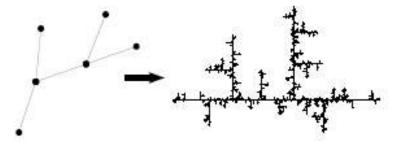
It is also possible to prove the same result when the mixing times are defined in terms of the L^p distance, for any $p \in [1, \infty]$.

EXAMPLE: CRITICAL GALTON-WATSON TREES

For the simple random walk X^N on T^N , a Galton-Watson tree with a critical (mean 1), aperiodic, finite variance offspring distribution, conditioned to have N vertices, started from root ρ^N ,

$$\left(N^{-1/2}X_{\lfloor tN^{3/2}\rfloor}^N\right)_{t\geq 0}\to \left(X_t^{\mathcal{T}}\right)_{t\geq 0},$$

where $X^{\mathcal{T}}$ is the Brownian motion on the continuum random tree, started from its root ρ [C].



(Scaling of graphs in [Aldous]. See also [Duquesne, Le Gall].)

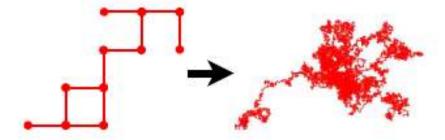
For mixing times: $N^{-3/2}t_{\rm mix}^p(\rho^N) \to t_{\rm mix}^p(\rho)$, in distribution.

EXAMPLE: RANDOM WALK TRACE

For the simple random walk X^N on $G^N = S_{[0,N]}$, the trace of the random walk up to time N, in dimensions ≥ 5 ,

$$\left(N^{-1}X_{\lfloor tN^2\rfloor}^N\right)_{t\geq 0} \to \left(X_{ct}^{\mathcal{R}}\right)_{t\geq 0},$$

where $X^{\mathcal{R}}$ is the Brownian motion on the range of the Brownian motion up to time 1, $\mathcal{R} := \{B_t : t \in [0,1]\}.$



Result originally proved for entire trace $S_{[0,\infty)}$, see [C].

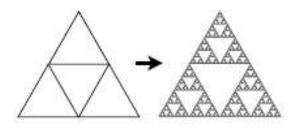
For mixing times: $cN^{-2}t_{\text{mix}}^p(S_{[0,N]}) \to t_{\text{mix}}^p([0,1])$, almost-surely.

EXAMPLE: SELF-SIMILAR FRACTAL GRAPHS

For simple random walk X^N on the pre-nested fractal graph \mathcal{G}^N ,

$$\left(L^{-N}X_{\lfloor t(M\lambda)^N\rfloor}^N\right)_{t>0} \to \left(X_t^F\right)_{t\geq 0},$$

where L is a length scaling factor, M is a mass scaling factor, and λ is a resistance scaling factor [Lindstrom]. e.g. L=2, M=3, $\lambda=5/3$ for the S.G.



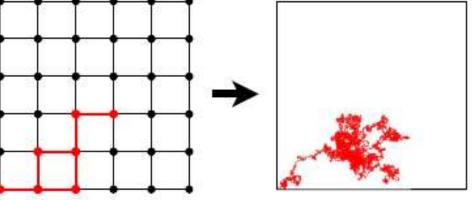
Similarly for p.c.f.s.s. fractal graphs [Kigami] and Sierpinski carpet-type graphs [Barlow, Bass, Kumagai, Teplyaev]. Also random weights in finitely ramified examples [Kumagai, Kusuoka].

For mixing times: $(M\lambda)^{-N}t^p_{\mathsf{mix}}(G^N) \to t^p_{\mathsf{mix}}(F)$, in probability.

EXAMPLE: LATTICE MODELS IN A BOX

For the simple random walk X^N on $\{1, \ldots, N\}^d$,

$$\left(N^{-1} X_{\lfloor t N^2 \rfloor}^N \right)_{t \ge 0} \to \left(X_t^{[0,1]^d} \right)_{t \ge 0}.$$



For mixing times: $N^{-2}t_{\text{mix}}^p(\{1,\ldots,N\}^d) \to t_{\text{mix}}^p([0,1]^d)$.

OPEN PROBLEMS

Lattice homogenisation

Place i.i.d. weights on edges of box $\{1, ..., N\}^d$, i.e. random conductor model. Does random walk converge to Brownian motion? Do mixing times converge?

Convergence of spectrum

Do eigenvalues of graphs ${\cal G}^N$ converge to those of ${\cal F}$,

$$-\gamma(N) \ln \lambda_{N,j} \to \lambda_j$$
?

In particular, does the spectral gap $\lambda_{N,1}$ converge?