Viscosity related:

Notes on GO (numerics, theory, applications ...)

→ Superconvergence of upwind schemes ????
Numerical MicroLocal Analysis (NMLA)

S. Marmorat (POEMS - INRIA Rocquencourt/ Mines Nancy)
F. Collino (CERFACS)
J.-D. Benamou (POEMS - INRIA Rocquencourt)

"Given frequency domain wave data, the proposed new algorithm gives a pointwise estimate of the the number of rays, their slowness vectors and corresponding wavefront curvature. With time domain wave data and assuming the source wavelet is given, the method also estimates the traveltime."

![Graphs and images related to numerical microlocal analysis]
NMLA

Geometric optics equations: Find local asymptotic solutions of

\[
\frac{\omega^2}{c^2(x)} \hat{u}(x; \omega) - \Delta \hat{u}(x; \omega) = 0
\]

\(\hat{u}\) replaced by "ansatz"

\[
\hat{u} \simeq \hat{u}^{\text{ray}}(x; \omega) = A(x)e^{i\omega \varphi(x)}
\]

yields

\[
\begin{cases}
|\nabla \varphi(x)| = \frac{1}{c(x)} \\
2\nabla \varphi(x) \cdot \nabla A(x) + A(x) \Delta \varphi(x) = 0
\end{cases}
\]

Ray equations

\[
\begin{cases}
\dot{y}(s, x_s) = \nabla \varphi(y(s, x_s)) := p(s, x_s) \\
\dot{p}(s, x_s) = \nabla \frac{1}{c^2(x)}|_{x=y(s,x_s)}, \quad \dot{\varphi}(s, x_s) = ...
\end{cases}
\]
Plane wave approximation

\[\varphi(x) \simeq \varphi(x_0) + (x-x_0) \cdot \nabla \varphi(x_0) + \frac{1}{2} (x-x_0)^T H \varphi(x_0) (x-x_0) + \ldots \]
yields

\[\hat{u}(x; \omega) \simeq B(x_0) e^{i \omega (x-x_0) \cdot \nabla \varphi(x_0)} \]

where

\[B(x_0) = A(x_0) e^{i \omega \varphi(x_0)} . \]

The "general" \(N \)-rays ansatz:

\[\hat{u}(x; \omega) \simeq \sum_{n=1}^{N} B_n(x_0) e^{i \omega (x-x_0) \cdot \nabla \varphi_n(x_0)} \quad x \text{ near } x_0 \]
NMLA observable

The observable data (\tilde{s} is on the Sphere $\mathbb{U} = \{||\tilde{s}|| = 1\}$)

$$U_\alpha(\tilde{s}) = \frac{c(x_0)}{i\omega} \frac{\partial \tilde{u}}{\partial r}(x_0 + r\tilde{s}; \omega) + \tilde{u}(x_0 + r\tilde{s}; \omega), \quad r = \frac{\alpha c(x_0)}{\omega}.$$

"should" fit the ansatz form

$$U_\alpha(\tilde{s}) \simeq \sum_{n=1}^{N} (\tilde{s} \cdot \tilde{d}_n + 1) B_n e^{i\alpha \tilde{s} \cdot \tilde{d}_n}, \quad \tilde{d}_n = c(x_0) \nabla \varphi_n(x_0)$$
The inverse problem: Given $U_\alpha(\tilde{s})$, find (N, B, d)

$$(B, d) = (B_1, \ldots, B_N; \tilde{d}_1, \ldots, \tilde{d}_N)$$

is not easy ...

\[\theta_i \rightarrow \|e^{i\alpha \cos \theta} - e^{i\alpha \cos(\theta - \theta_i)}\|_{L^2([0,\pi])} \] for $\alpha = 50 \rightarrow$ Tons of local minima.

\[\min_{(N,B,d)} \|U(\tilde{s}) - \sum_{n=1}^N (\tilde{s} \cdot \tilde{d}_n + 1)B_n(x_0)e^{i\alpha \tilde{s} \cdot \tilde{d}_n}\|_V \] even HARDER!
Look instead at an infinite dimensional linear problem

Change the unknown \((B, d, N)\) for a density function
\[
\beta : \tilde{s} \in U \mapsto \beta(\tilde{s}) \in \mathbb{C}
\]

\[
U_{\alpha}(\tilde{s}) \simeq \sum_{n=1}^{N} (\tilde{s} \cdot \tilde{d}_n + 1) B_n e^{i\alpha \tilde{s} \cdot \tilde{d}_n}
\]

\[
= \int_{U} (\tilde{s} \cdot \tilde{d} + 1) e^{i\alpha \tilde{d} \cdot \tilde{s}} \left(\sum_{n=1}^{N} B_n \delta(\tilde{d} - \tilde{d}_n) \right) d\sigma(\tilde{d})
\]

\[
= \int_{U} (\tilde{s} \cdot \tilde{d} + 1) e^{i\alpha \tilde{d} \cdot \tilde{s}} \beta(\tilde{d}) d\sigma(\tilde{d})
\]

\[
= K_{\alpha} \beta(\tilde{s}).
\]
• K_α can be diagonalized on the Fourier basis \(\left\{ e_l(\tilde{s}) = \frac{1}{\sqrt{2\pi}} e^{il\theta\tilde{s}} \right\}_{l \in \mathbb{Z}} \) and Eigenvalues depend on Bessel functions

\[K_\alpha e_l = D_l(\alpha) e_l, \quad D_l(\alpha) = 2\pi i^l (J_l(\alpha) - iJ'_l(\alpha)) \]

\(J_l(\alpha) \) is the Bessel function of order \(l \) and argument \(\alpha \).

• Solution of the linear problem is formally given as

\[\beta := \mathcal{F}^{-1}(\{\tilde{\beta}_l\}), \quad \tilde{\beta}_l = D_l^{-1} \mathcal{F}(\{U_\alpha\})_l \]

\(J_l(\alpha) - iJ'_l(\alpha) \) for \(\alpha = 30 \):
The bounded (stable) normalized inverse operator:

\[(\text{NMLA filter}) \; \beta := \frac{1}{2 \; L(\alpha) + 1} \mathcal{F}^{-1}(\{\hat{\beta}_\ell\}), \quad \hat{\beta}_\ell = H_\ell \mathcal{F}(\{U_\alpha\}_\ell)\]

with

\[H_\ell = D_\ell^{-1} \text{ if } |\ell| < L(\alpha)\]

\[= 0 \text{ else.}\]

where \(L(\alpha) = \min\{\alpha, \alpha + \alpha^{1/3} - 2.5\} \rightarrow \|K'_\alpha^{-1}\| < 3\)

Discretization

\[\{B_m\} := \frac{1}{2 \; L(\alpha) + 1} \mathcal{F}^{-1}(\hat{\beta}_m) \quad \hat{\beta}_\ell = H_\ell \mathcal{F}(\{U_m\}'_\ell)\]

\(m^* \text{ such that } |B_{m^*}| = \max_m |B_m|\)
Test 2 sources, homogeneous medium NMLA stability.
$|\beta(\theta_s)|$ White noise (20%-40%)

Correlated noise (20%-40%)

Red lines : exact ray angles.
Varying α: 10, 20, 50
NMLA 2nd order

- α bounds the number of Fourier modes, while we hope to recover Dirac masses ...

- Cannot increase α because of the plane wave approximation.

$$\varphi(x) \simeq \varphi(x_0) + (x-x_0) \cdot \nabla \varphi(x_0) + \frac{1}{2} (x-x_0)^T H \varphi(x_0) (x-x_0) + ...$$

Recall $x - x_0 = \alpha \frac{c(x_0)}{\omega}$.

\rightarrow Need to estimate 2nd order terms.
The simplest 2nd order approximation

Assume only one ray in the solution. Constant curvature HF asymptotics

\[H_{0}^{1}(\frac{\omega}{c}|x|). \]
Approximate NMLA data with H^1_0

$$U_{\alpha}(\tilde{s}) \simeq \frac{A_0(x_0)}{|i \frac{4}{4} H_0^{(1)} \left(\frac{\omega}{c} |d \tilde{d} + r \tilde{s}| \right)|} e^{i \omega (\varphi(x_0) - d)} \frac{i}{4} H_0^{(1)} \left(\frac{\omega}{c} |d \tilde{d} + r \tilde{s}| \right)$$

$d\tilde{d}$ and d yet to be found

$\theta \tilde{d}$ and $\frac{1}{d}$ are the local ray direction and mean curvature.
Use FMM type asymptotic expansions $\gamma = \frac{\omega d}{c(x_0)}$ is the large parameter. This ”new ansatz” yields a curvature correction to the NMLA Fourier modes

$$\tilde{\beta}_\ell \approx Ae^{i\omega \varphi(x_0)}e^{i(\ell\theta_d + \frac{(\ell^2 - \frac{1}{4})}{2\gamma})}$$

\[
\frac{1}{i} \log\left(\frac{\tilde{\beta}_\ell}{\tilde{\beta}_0}\right) \text{ versus } \ell
\]

Nota : Plane wave approximation Fourier modes were

$$\tilde{\beta}_\ell \approx Ae^{i\omega \varphi(x_0)}e^{i\ell \theta_d}$$
Curvature correction Algorithm

1. Get an estimated θ_{m^*} of $\theta_{\bar{d}}$ (using NMLA).

$$\{B_m\} := \frac{1}{2 L(\alpha) + 1} \mathcal{F}^{-1}(\hat{\beta}_m) \quad \hat{\beta}_\ell = H_\ell \mathcal{F}(\{U_m\} \ell)$$

m^* such that $|B_{m^*}| = \max_m |B_m|$

2. Estimate Curvature γ and angle $\delta \theta = \theta_{\bar{d}} - \theta_{m^*}$ corrections through parabolic fitting of the phase of

$$\frac{\hat{\beta}_\ell e^{-i \ell \theta_{m^*}}}{\hat{\beta}_0} = e^{i(\ell \delta \theta + \frac{(\ell^2 - \frac{1}{4})}{2\gamma})}$$

3. Correct NMLA amplitudes

$$\{B'_m\} := \frac{1}{2 L(\alpha) + 1} \mathcal{F}^{-1}(\hat{\beta}_\ell e^{-i(\ell \delta \theta + \frac{(\ell^2 - \frac{1}{4})}{2\gamma})})$$
Test 1 source, homogeneous medium
Numerical illustration

Source point discovery in Heterogeneous medium.

Acoustic speed

+: source point, X: observation point
Synthetic data numerical simulation (snapshots)

Generated using standard FDTD + ABCs
Microlocal Analysis at observation

NMLA basic: ray take-off angle at observation point: 90.2970°
NMLA 2nd order (red): 90.5503° traveltime: 0.4602s.
Radon (green): 91.002°
PWD (yellow): 90.7418°

Ray backward propagation
Summary/Conclusion* - Robust local HF components analysis tool.
- Based on the ”true” HF model.
- Completely automatic, no tuning parameters.
- Possible extensions : 3D, Elastic Waves.
- Possible target applications in wave modeling : hybrid HF/FD-FE methods.
- Possible target applications (Geophysics) : RTM angle gathers, Data analysis and cleaning.
- Possible target applications (Electromagnetics) : Antenna DOA, ISAR bright source points SER reduced models.

Numerical algorithm

- Discretization: \(\theta_m = m \frac{2\pi}{M} \), \(m = 1..M \)
- Data: \(U_{\alpha,m} = U_{\alpha}(\theta_m) \) Generated from time domain seismogram using Time FT and One way extrapolation.
- \(\mathcal{F} \) is the 1D FFT

NMLA:
\[
\{B_m\} := \frac{1}{2L(\alpha) + 1} \mathcal{F}^{-1}(\{\hat{\beta}_\ell\}), \quad \hat{\beta}_\ell = H_\ell \mathcal{F}(\{U_{\alpha,m}\})_\ell
\]

\(\{B_m\} \) is the Fourier interpolant of \(\beta \). Choose \(M > L(\alpha) \) then accuracy is only dependent \(\alpha \)

Many pre-post processing options ... Simplest is \(|B_{m^*}| = \max_m |B_m| \) then \(\theta_{m^*} \) most energetic ray direction ...
Traveltime Computation with corrected amplitudes

Based on the "ansatz" we expect

\[B'_{m*}(\omega) \simeq A_0 \exp^{i\omega\varphi(x_0)}. \]

\[\frac{\partial_\omega B'_{m*}}{i B'_{m*}} \simeq \varphi(x_0). \]

In the Heterogeneous test case traveltime is approx. 0.46. We use a 0.1\,s time window on the seismogram.

\[\varphi(x_0) \] versus center of time window