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RKDG Methods for 1d Scalar Conservation Laws
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Consider

us + f(u), = 0, O<z<l1, t>0
u(x,0) = wup(z), 0<z<l1

with the periodic boundary condition.

RKDG methods:
e Discontinuous Galerkin (DG) discretizations in space

e explicit Runge-Kutta methods in time

-
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An incomplete history of the DG method for conservation laws

e 1973: First discontinuous Galerkin (DG) method for steady state

linear scalar conservation laws (Reed and Hill).

e 1974: First error estimate (for tensor product mesh) of the DG
method of Reed and Hill (LeSaint and Raviart).

e 1986: Error estimates for the DG method of Reed and Hill
(Johnson and Pitkaranta).

e 1989-1998: Runge-Kutta DG methods for nonlinear conservation
laws (Cockburn, Shu, ...).

e 1994: Cell entropy inequality for DG methods for nonlinear
conservation laws in general multidimensional triangulations (Jiang

and Shu).

- /




/ Semi-discrete DG formulation. \

Discrete space:

Vi, = th ={v:ve Pk(lj), Vi}

Some notations:

I; = [xj_%,ijr%], Ax; = |I;|, Axzor h= mjax|]j|
— L . + L .
Yy TR Oy vy = AR O
ot -
[v]j_% =U1 TV
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/ (e + f(1)a) vdz = 0

I;

I;

Semi-discrete DG discretization: look for uy € V},, such that
Vv, € Vi, and V7, there is

J

/uh(x,O)vhdwzf uo(x)vp (x)dx, (L?-projection)

I; I;

where fj+% = f U,

( hoj+3’

_|_
uh,j+%>'

— A +
/ Uhtvhdx_/ f Up Uh:cdx‘|‘f 1vh j+l _fj—lvh-
I - 2

[ v f@yvads + futey g )01 ) — Stz g )l _y) =0
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/f (u™, u+) 1S a monotone numerical flux: \

e Consistency: f(u,u) = f(u)

e Lipschitz continuity
e Monotonicity: f(1, )

Some examples:

- Lax-Friedrichs flux:
1

PR ut) = @) ) (et —uT), o= max| ()
- Godunov flux:
S ut) = min, - < <+ f(u), if v~ <u’
7 Max, + <, <u— f(u), if u= > ut

- Engquist-Osher flux:
— ’U,+

\ fEO(u_,u+):/()u max(f’(u),())du—l—/o min(f’(u),O)du+f(O)/
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Remarks:

- local conservation: set vy |7, =1

d "
E/Ij Uhd$+fj+% — Jj—

>

= 0.

N

- for k =0, up|7; = u;(t), the method is the same as the finite

volume method.

du; 1 . X
dtj -+ A:Cj (f(uj,uj+1) — f(uj—l,uj)) — 0

- for f(u) = au, all monotone fluxes become the upwinding flux

f(u_,u+) _ au~ ifa>0

aut ifa<0

- /
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* Implementation

e basis of V)¥|;, = P*(I;): {¢7" ()}~

(1) 1, &, -, &F with ¢ = L52)

(2) Legendre (orthogonal): 1, &;, %(3@2 —1),---, with

_ (z—=j)
g] T Aa}j/Q
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e semi-discrete DG method: look for u; with
Up|r, = Zf:() ul(t)¢l(x), such that Vo, = @7 (x) on I,
m=0,---,k and Vj

d i l ! m B i .
/Ij ! <lz_; uj(t)%'(:v)) ¢ (r)dr = /Ij f(uh)dxgbj (z)dx

- j—l—%(uhhjauh|fj+1)¢;’n($j—|—%) + fj—% (uh‘fj—l’uh‘lj)¢T($j—

J

J

)

1
2

k
(Z ug(())apg(x)) ¢7 (z)dw = / uo ()7 (x)dx
[=0

I;
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/o matrix form: Set \

U — [Ul’. .. 7UN]T7 With U] — [ugy te 7u§:j|T7

and
M = diag(Mla T 7MN)

where M; € REFDX(E+Y) with the (m,[)-th entry
| I gbé(w)gbgn(:v)dx Then the semi-discrete DG method becomes

~ ~

MU, = L(U),  MU(0) = U,

or
U, =M"1L(U)=L(U)
U(0) =M"1U, = Us,.

Note: - the mass matrix M is block-diagonal.

\ - numerical quadratures might be needed. /
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/ Time discretization I

e Forward Euler method: U™l = U" + AtL(U")

e TVD-RK methods
— 2nd order

w) = U™ + AtL(U")
1

1
Un—l—l S
2 i 2

(w(l) + AtL(wm))
— 3rd order

w) = U™ + AtL(U")

3 1
w(Q) — " 4+ —

1 1 (w(l) + AtL(wm))

2
Ul = Sun - (w<2> n AtL(w<2>))

1
\ 3 3
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/The CFL number (Ccpy,) for the linear L?-stability when
polynomials of degree k£ and Runge-Kutta methods of the order v

are used.

k 0 1 2 3 4 5 6 7 8
v=1 1.000 * * * * * * * *
y=2 1000 0333 * * * * * * *
=3 1256 0409 0209 0130 0089 0066 0051 0040 0.033
y= 1392 0464 0235 0145 0100 0073 0056 0045 0037
y= 1.608 053¢ 0271 0167 0115 0085 0065 0052 0042
y= 1776 0592 0300 0185 0127 0093 0072 0057 0047
=7 1977 0659 0333 0206 0142 0104 0080 0064 0052
y=8 2156 0718 0364 0225 0154 0.114 0087 0070 0.057
=9 2350 0783 0396 0245 0168 0.124 0095 0076 0.062
y=10 2534 0844 0428 0264 0182 0.134 0103 0082 0.067
y=11 2725 0908 0460 0284 0195 0.144 0.111 0088  0.072
y=12 2911 0970 0491 0303 0209 0.153 0.118 0094 0077

At

\Note: ax> < CcorL with a = maxy, | f/(w)].

~
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More discussions: These are examples of strong stability preserving
(SSP) time discretizations. That is, when the first-order forward
Fuler time discretization is strongly stable under a certain norm or
semi-norm (such as maximum norm, total variation norm) when
the time step At is suitably restricted, then SSP time
discretizations maintain strong stability for the same norm,
perhaps under a different time step. (Shu, Osher, Gottlieb)

. /
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/U se TVD-RK3 as an example. \

w) = U™ + AtL(U™)

w'? = §U" + e (w(l) + AtL(w(l)))

4 4
Ut = éU” + g (w@) + AtL(w(Q)))

Suppose for w = v + AtL(v), there is |w|, < |v|, under |At| < a.
Then with the same restriction on At, |[U*t|, < |U™|, holds.

w . < U,

w®], < 2|u” w + AtL(w™)],

+

n

<

+

wM], < U™

U, w'® + AtL(w®)|,

VAN
3

*

_|_

U
U
U

w?], < U,

VAN
Wl Wl W RlW

3
*
_|_
WIN WIN = &
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/U se TVD-RK3 as an example.

w®

U?’L—l—l _

|w(2)|* <

<

|Un—|—1|*

VAN

AN
Wl Wl AW RlW

3

4
1

1

Un 4+ =
1

2

—Un—l——

3

w ] < U,

U’I’L

n

3

3

U
U
U

%

%

%

%

3
Suppose for w = v + AtL(v), there is |w|, < |v|, under |At| < a.
Then with the same restriction on At, |[U"*!|, < |U"|, holds.

+ o+ o+

_|_
WIDN WIDN | = x| =

w) = U™ + AtL(U™)
(w<1) - AtL(w(l)))

(w<2) -+ AtL(w(Q)))

w + AtL(w™M)],
wM], < U™
w'® + AtL(w®)],

w?], < U,
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/U se TVD-RK3 as an example.

w®

U?’L—l—l _

|w(2)|* <

<

|Un—|—1|*

VAN

AN
Wl Wl W RlW

3

4
1

1

Un 4+ =
1

2

—Un—l——

3

w ] < U,

U’I’L

n

3

3

U
U
U

%

%

%

%

3
Suppose for w = v + AtL(v), there is |w|, < |v|, under |At| < a.
Then with the same restriction on At, |[U"*!|, < |U"|, holds.

+ o+ o+

_|_
WD WIDN | = x| =

w) = U™ + AtL(U™)
(w(l) - AtL(w(l)))

(w(2) -+ AtL(w(Q)))

w + AtL(w™)],
w], < U™,
w'® + AtL(w®)],

w?], < U,
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Cell entropy inequality and L2—stabilityl

The physically relevant weak solution (called entropy solution, or

viscosity solution) satisfies the entropy condition:
U(u) + F(u), <0

in distribution sense for any convex entropy U(u) and the
corresponding entropy flux F(u) = [ U'(u)f'(u)du.

Note: For U(u) = u?/2, the entropy flux is

Fw) = uf(w) - [ " fw)du

- /
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/Proposition (Jiang and Shu 1994): (1) The solution uy to the \

semi-discrete DG scheme satisfies the following cell entropy

inequality
- / (up)dx +

for the square entropy U(u) = “7 and for some consistent entropy
flux

— F__

<0

MI»—*
N

A

: +

J+ U j+%)

with F(u,u) = F(u) = uf(u) — [* f(u
(2) Furthermore, up, satzsﬁes the followmg L?-stability

q (!
pr (up,)*dz < 0,
or, with || - ||o as the L? norm,

\ Jun (5 8)llo < [lual:, 0)llo < [luollo-

/
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Proof: The semi-discrete DG method: find up € Vj, s.t. Vo, € Vp,

\¥
Bj(uh,vh) = O,
here
Bj(w,v) = /I wwdaz—/} f(w)vxda:—kfjJF%v;r% —fj_%vj_%
J J
Step 1:
Bj(un,up) =0, vJ
Step 2: To show Yw € Vj,, with U(w) = w*/2 and H(w) = [ f(w
d ) )
Bj(w,w) = a/; U(w)dz + F 1 —F; 1 —I—QY_%

with ©;_1 >0, and F(w™,w") =w~f — H(w™) which is consistent to

2

the entropy flux F(w) = wf(w) — H(w).

. /
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With U(w) = w?/2 and H(w) = [ f(w)dw,

Bj(w, w) :/ wt’u’dﬂf—/ f(w)wxd$+fj+%wg'_+l fi-ywi_y
I; I; 2 2
4 Uw)de — H(w- H(wt fwT f
dt ;. (w)da — H(w +%)+ (wj—%)+fj+%w9+% ~ -
d A _ _
:ﬁ IU(QU)CZCC‘i‘ ( j+%w _I_% _H(w]_l_%))
P,
JT3
- ( i—3Wi_1 ~ H(w__%)> T <[H(w)]y—% ~ fi-glwli—y
F;; 9;%
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With U(w) = w?/2 and H(w) = [* f(w

Bj(w,w) :/ wtwdx—/ f(w wxdx—l—erlel _
. I 2
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With U(w) = w?/2 and H(w) = [* f(w)dw,

_ ; - +
Bj(w,w) —/I.wtwd:c—/ll f(w)wxd:v+fj+%wj+% —fj_%wj_%
d _ R B )
= I‘U(w)d:v—H(w +%)+H(wj_%)+fj+%wj+% — [i-1
d . _ _
- I.U(w)dafﬁ— ( AW —H(ijr%))
P
)
— (Fioywyy —Hwy )+ ([H@)),y = fiy el )
F;; 9;%
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What remains is to show © > 0. Note that H(w

© = [H(w)] — f[u]

wt

fw)dw — f(w™,wh)(wh —w™)

w

/wwfwwdw / f(w™,wh)dw

w

|
\

F(w,w) — f(w™ wdw+/ fw™,w) —

w

Vv
-

-

The last inequality is due to the monotonicity of f (-

=" f(w

f(w_, wh)dw

).

/
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What remains is to show © > 0. Note that H(w) = [* f(w)dw

6 = [H(w)| - flul
- / Fw)dw — fw, wt)(w® — w)

:/w f(w,w)dw/ww+ flw™ wh)dw

= f(w,w) —f(w_,fw)der/w fw™,w) — f(w™,wh)dw

The last inequality is due to the monotonicity of f(-,-).

- /
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What remains is to show © > 0. Note that H(w) = [* f(w)dw

6 = [H(w)| - flul
- / f(w)dw — fw™, wt)(w* — w)

:/w f(w,’w)dw/ww+ flw™ wh)dw

= [ fww - fem et [ fww) - fu wd

The last inequality is due to the monotonicity of f(-,-).

- /
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Limiter and total variation stability'

For discontinuous solutions, the cell entropy inequality and the L2

-stability, although helpful, are not enough to control spurious numerical
oscillations near discontinuities. In practice, especially for problems
containing strong discontinuities, we often need to apply nonlinear
limiters to control these oscillations and to obtain provable total

variation stability.

Requirement on the limiter:
e Maintain the local conservation: keep the cell average

e Do not degrade the accuracy of the scheme

- /
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/I\/Iinmod limiter: \

~ d ~ — — ~ d o~ — —
ugmo ) — m(t;, Ay, A_u;), ugmo ) — m(t;, Ay, A_u;)
with
s min(|ay|, - ,|a;|), if s =sign(a;)="---sign(q;)
m(a1,°-°,al): )
0, otherwise
Then set
d), — _, ~(mod d _ =(mod
ugmo >(xi+%):ui—|—u§-mo ). ugmo >(a:j_%):ui—u,§mo )
. _ (mod) , —
and a new uy, is reconstructed based on @;, uy, ' (x,, 1),
2

uém()d) (x:r_;)-

Note: The reconstruction is uniquely determined for £ =1

\(agm‘)d) = @™Y) and for k = 2. /
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The solution before (solid line) and after (dashed line) using the

limiter:
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@

emma (Harten 1997): If a scheme can be written in the form

n+1l _ n n n

1

with periodic or compacted supported boundary conditions, where
mn

may be nonlinear functions of the grid values u;

Cip1 and D;_ 2
2
.1+ q with some p,q > 0, satisfying

2

fO’I“j:’l:—p,“‘

then the scheme is T'VD, namely
TV (u" ™) < TV (u"),

where the total variation seminorm s defined by

TV (u) = Z A L.

-
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Proposition: The solution uy of the DG scheme with the forward

Euler time discretization using the limiter discussed above, is total
variation diminishing in the means (TVDM), that is

TVM(up™) < TV M (u}l).
with the semi-norm defined as

TV M (up,) Z AT

Similar result can be extended to high order SSP time

discretizations.

. /
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How about accuracy?

(1) In the smooth, monotone region: assume uy, is an approximation

to a locally smooth function u, then

iy = %ux(a:i)Axi Lo, @y = %ux(xi)Aa:i +O(h2)

while
AT = %ux(m(mi + Aziir) + O(h2),
A_T; = %ux(xz)(sz + Ax;_q) + O(h?).
and then

~ d
urgmo )

. /

= m(sz, A+ﬂz‘, A_ﬂz) ~ U;
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(2) At the smooth extrema:

~
-

(ALT)(A_T;) < 0 and

am°Y = (i, Ay, A_t;) = 0.

1

Accuracy loss!. T'VD schemes are at most first order accurate at

smooth extrema.

- /
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TVB limiter:

~ ai, if |aq| < Mh?,
miay, - a) = .
m(ay,---,a;), otherwise.

Note:

- With suitably chosen M, DG methods with this limiter is

TVBM and can achieve uniform high order accuracy.

- Other limiters: moment limiters, WENQO limiters

-
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‘ Error estimate '

Proposition: Let u be the smooth exact solution to the

conservation law u; + u, = 0, and let up, be the numerical solution
to the semi-discrete DG method, then

u — upllo < COhF+1

here the constant C' depends on the exact solution and it s

independent of h, and || - ||o is the L? norm.

Note: - the monotone flux is upwinding f(u",u") = u ™.

- similar result can be established for smooth solutions of general

nonlinear conservation laws and for fully discretized RKDG methods
(Zhang and Shu 2004).

N

/
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Proof:
Step 1: A projection. Yw € H**1(0,1), define Pw € V}¥, such that

/ (Pw(z) —w(x))v(z)dr = 0, Yu € Pk_l(lz-),

|lw — Pwl|o < C||lwl||grerRFTL.

Denote e, = Pu — uy, € Vh"“, en = u — Pu, then u—up = ey, + ¢y,

and

lu —upllo = |len + enllo < |lenllo + Ch* !

-

~
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Proof:
Step 1: A projection. Yw € H**1(0,1), define Pw € V}¥, such that

/ (Pw(z) —w(x))v(z)dr = 0, Vv € Pk_l(lz-),

lw = Pully < Cfw]| g b+

Denote e, = Pu — uy, € Vh"“, en = u — Pu, then u—up = ey, + ¢y,

and

[ —unllo = llen +enllo < [lenllo + CR*

-

~
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Proof:
Step 1: A projection. Yw € H**1(0,1), define Pw € V}¥, such that

/ (Pw(x) —w(x))v(z)dr = 0, Vv € Pk_l(lz-),

lw = Pully < Cfw]| g b+

Denote ej, = Pu — uy, € Vh’“, en = u — Pu, then u — up, = ey, + €,

and

lu —upllo = |len + enllo < llenllo + Ch* !

-

~
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/Step 2: Error equation / Galerkin orthogonality. Given 4, from

there is
B;(u — up,v) =0, V’UGth,
= B;(en + ep,v) =0, Vv € Vh’“.

Step 3: to show ||ex||o < CRFTL. Take v = ¢;, in (1),
Bi(en,en) = —Bi(en, en)

The cell entropy inequality gives

1 d
2dt J;

with ©;_1 > 0. Theretore

Bi(en,en) = (en)?dx + F,L-Jr — F,

N

1d !

\ 2dt J,

(en)?dx < Z Bi(en,en).

~

B;(up,v) = 0 (scheme) and B;(u,v) = 0 (consistency) for v € th,
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/Step 2: Error equation / Galerkin orthogonality. Given 4, from

there is
Bi(u — up,v) =0, VUEth,
= B;(en + €p,v) =0, Vv € th.

Step 3: to show ||ex||o < CRFTL. Take v = e;, in (2),
Bi(en,en) = —Bi(en, en)

The cell entropy inequality gives

1 d
2dt |

with ©;_1 > 0. Therefore

Bi(ep,epn) = (en,)?*dz + F,L-Jr — F;

N[

1d [}

\ 2dt J,

(ep)?dx < Z Bi(en,en).

~

B;(up,v) =0 (scheme) and B;(u,v) = 0 (consistency) for v € th,
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-

and

—Bi(é‘h, €h) = — / (5h,teh — 5h€h,az) dxr — (gh)z’_—l—l (eh)’_—l—l + (€h)
I 2

T3

1

_/ en.end, (definition of projectiont?)
I;

g% (/I'(sh,t)de - /I'(eh)de>

(4 (4

t1: due to e, € P*1(I}),

/ Eneh AT = / (u — Pu)ep, zdx = 0,

<€h)i——|-% — u'i—l—% R <Pu);+ =0

1
2
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Sum up over ¢,

1d
5@ . (eh d:U<ZB eh,eh ZB 8h,6h

1 1 1
§§ (/ (€h,t)2d£b'—|—/ <€h)2d£€>
0 0
1 1
<Ch**2 4 5 / (en)?dx
0

The last inequality uses

en.tllo = llue — (Pu)ello < [lue — Plue)llo < CREF.

The final result follows from a Gronwall’s inequality and the initial
error ||ug(-) — up(-,0)]|o < ChFFL.

- /
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‘ Further discussion '

(1) DG methods can be formulated for multi-dimensional scalar or

system of equations.
us + F(u)s + g(u)y =0

U, +F(U), =0, U,+V-FU)=0.
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(e

k=T, i=100=, solid line: exacl solufion; k=6, i=T00n, solid line: exacl solufion;
dashed line / squares: numerical solution dashed line / squares: numerical solution
= 1.1 5 141

Figure 1: Transport equation: Comparison of the exact and the RKDG so-
lutions at T = 100 with second order (', left) and seventh order (P°,
right) RKDG methods. One dimensional results with 40 cells, exact solution
(solid line) and numerical solution (dashed line and symbols, one point per

cell)
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.

NN Y

NN

NN Y
NN

Figure 2: Transport equation: Comparison of the exact and the RKDG so-
lutions at 7" = 1007 with second order (I°*, left) and seventh order (PY,

right) RKDG methods. Two dimensional results with 40 x 40 cells.
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Rectangles P1,Ax=Ay =1/320

e

The flow passes a forward-facing step problem for the 2d compressible Euler

wuation

/
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(3) Advantages of DG methods

e FEasy handling of complicated geometry and boundary
conditions (common to all finite element methods). Allowing
hanging nodes in the mesh (unique to DG).

e Compact. Communication only with immediate neighbors,
regardless of the order of the scheme.

e Explicit. Because of the discontinuous basis, the mass matrix is
local to the cell, resulting in explicit time stepping (no systems

to solve).

e Parallel efficiency. Achieve 99% parallel efficiency for static
mesh and over 80% parallel efficiency for dynamic load
balancing with adaptive meshes (Flaherty et al.).

- /
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~

Provable cell entropy inequality and L? stability, for arbitrary
scalar equations in any spatial dimension and any

triangulation, for any order of accuracy, without limiters.

At least (k + 1)-th order accurate, and often (k + 1)-st order
accurate for smooth solutions when piecewise polynomials of

degree k are used, regardless of the structure of the meshes.
Easy h-p adaptivity.

Flexibility in using various local approximating functions
(divergence-free, curl-free, harmonic polynomials, planewave

functions, ...)

Local conservation for conservation laws.
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DG Methods for Convection-Diffusion Equations
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Outline

e An ‘inconsistent’ discontinuous Galerkin (DG) method

e Local DG (LDG) methods for convection-diffusion equations
— Semi-discrete formulation
— ‘Cell entropy inequality’ and L?-stability
— Error estimate

— Time discretization

e [urther discussion

-
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‘ An ‘inconsistent’ DG method'

Consider the heat equation

Uy = Ugpg, O<ax<l1l, t>0
u(x,0) = wo(z), 0<z<l1

with the periodic boundary condition.

A straightforward generalization of the DG method from the
conservation law u; + f(u), = 0 is to write down the same scheme

and replace f(u) by —u,.

- /
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Discrete space:

Vi, = th ={v:v € Pk(lj), Vit

Some notations:

Ij=lz;_1,2;01], Azj =], Ax orh:mjax\lj\
— L . + L .
vipy = lmoo(egey e, vy = lim vz g )
1
_ - _ L+ -
[U]j—% — /Uj_% T /Uj_%a {/U}j—% — 5(7}3‘_% —|—’U._%)

/




- ] N

Recall the semi-discrete DG discretization for u; + f(u), = 0: look
for u; € Vj,, such that Vv € V},,

up rvdr — wv.de + f. v, —f. vt , =0
/I, . /fjﬂ WUsd + iy = Fi-405

J

A generalization to the heat equation u; — uy, = us + (—uz), = O:
look for u;, € V}, such that Vv € V},,

— — — _I_ .
/ Up vdT +/ Up z VAT — (uh,:,;)jJr%'UjJrl + (Uh’x)j_%’l}j_l = 0,
I I 2 2

j j
and the central flux is a natural choice:

—_—

- /
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4 A

k=1, 1=0.8, solid line: exact solution; k=2, t=0.8, solid line: exact solution;
dashed line / squares: numerical solution dashed line / squares: numerical solution

= 0.6

- The solution of the ‘inconsistent’ DG method for the heat equation on
(0,27) with uo(x) = sin(z). 3rd order Runge-Kutta method is used in
time with 160 mesh elements.

- The method is consistent to the heat equation yet it is (very weakly)

\unstable (Zhang and Shu 2003). /
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LDG methods for convection-diffusion equations'

(Bassi and Rebay 1997, Cockburn and Shu 1998)

* Semi-discrete formulation: rewrite the heat equation

Ut = Ugy
into a system

ut = (g

q = Uy

- /
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/Find un, qn € V3 such that Vv, w € V),

/ uh,tvdl’ +/ qnUzdT — (th)jJr%'Uj_Jr; + (th)j— 'U;r_% = 0,
I I

J J

J J

A natural choice: (central)

ap =A{unt,  qn={qn}
A better choice: (alternating)

A . — A L + A L + A L —_
Up = Uy, Gh — Gy, Oor Up = Uy, qn — g,

Note: - the discrete space is the same for uj; and gj,.

&gives the name of the method.

/ thdﬁlf —I_/ uhpxdx — (ah)j+lpj+1 + (?lh>j_%pj_% = (.
I; I

- qp can be solved locally in terms of uj in each mesh element, this

/
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Consider the convection-diffusion equation

ur+ f(u), = (a(w)ug)z, 0<z<1l, t>0
u(z,0) = wug(x), 0<x<l1

with the periodic boundary condition and a(u) > 0.

The equation can be rewritten as the system

ug + f(u)e = (0(u)q)s
g—B(u), = 0

where
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Find uy, gn € Vi, such that Vv, w € V},

/Ij (up)ivdr — /Ij (f(up) — b(ur)qn)veda

+(f - ij)jJr%'Uj_Jr; — (

2

J J

A

e f is a monotone flux.

o (I;, q, B) is either of the following

4 — ) h
Up, — Up,

~ B(u) — B(u;

b= (h_2 _<h)7 QA:C];;
Up, — Up,

kﬁ)
|
oS>
>
~—
Q.
|
N[~
e
_|_
|
\.O

/ thda:—l—/ B(uh)pxdx—éﬂép;r% —|—Bj_%pj_% — 0.
I I
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ﬂ ‘Cell entropy inequality’ and L2-stability \

Proposition: (1) The solution up, qn to the semi-discrete LDG scheme

satisfies the following ‘cell entropy inequality’

1d
2 dt

A

I'<Uh>2dx+‘/1 qidaﬁ+l3’j+% — F,

-3

<0

j
for some consistent ‘entropy flux’ F= ﬁ’(ug,q;;uz, q;{) satisfymg
F(u,q;u,q) = F(u) —ub(u)q where, as before, F(u) = uf(u — [* f(u

2) Furthermore, un, qn satisfies the following L*-stability
(

d [* 2 by
— [ (up)’dx+2 | qpdx <0,
dt Jo 0
or with || - ||o as the L* norm,
fun O +2 [ lan )1 < a0V < ol

. /
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/Pmaf: The semi-discrete LDG method: find uy, q; € V3, s.t.
Yu,pe Vi, V5
Bj(uha dh; Uap) — Oa

B, (u, g v,p) = / uevdz ~ / (£() — b(u)q)veds
; Ty +
: - : +
/ qux+/ (U>pxdx—Bj+%pj+% +Bj_%pj_%
Step 1:
Bj(un, qn; un, Qh) =0, Vj
Step 2: To show Yu,p € V4, with H(v) = [° f(v
. 1d 2 2 ~ ~
B;(v,p;v,p) = 57 I'v dac—l—/I.p dr + F, | I Fj_% —I—G)j_%
J J

with @j_% > 0, and F is consistent to the ‘entropy flux’

\ F0) = v1(0) = Hw) = bl

~
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—
i
\V}
o8
8
|
N
( —~

(J(0) = b(©)p)ve = B(o)p, do

Ve

(H(U)_B<U)p)a:

N J/

—(f = bB);_3v]y — By, + B

N

(H(v)=B(w)p) [ 1 —(H(v)=B(v)p)

N~

_|_
i

N|—=
N[~

j‘|‘§ J

i-}

/




Bi(v.pivp) = | v~ [ (1) = bo)p)usda
I I
+ (f— Aﬁ)g+%vj_ L~ (f_ 6]3)3 17];_%

1 d

— 5 | Pt [ v [ (F©) ~ o). — B, da

2 dt I; I I; N ~~ -
(H(v)—B(v)p)z

L J/
V

(H(0)=B)p), , ~(H@)=B@p)!




65

+(f — ﬁ)g+%7)j_+§ — (f —bp); %U;r_%
+/I pzdx—i—/I.B(v)pxdx—BﬁL%p;r%—I—BJ_%p;r_%

1 d

— 5 | et [ v [ (F0) ~ o), — B, da

2 dt I; I I N ~~ -
(H(v)—B(v)p)z

L J/
v

(H()=B)p)], , ~(H@)-B@p)!
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(w

hat remains is to show © > 0.

© = [H(v) — B(v)p] — (f — bp)[v] + Bp]
= [HW)] = flv] = ([B(o)p] - bplo] — Blp))
= [H@©)] - flv]

The last equality is due to the choice of (ZA), D, é), and an equality
lab] = [bla™ + [a]b™.

Now © is the same as that for the conservation law case, therefore
© > 0.

- /
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* Error estimate

Proposition: Let u be the smooth exact solution to the heat
equation u; = Ugyz, and let up, qn be the numerical solution to the
semi-discrete LDG method with alternating fluxes, then

1
HU(°,t) o uh(°7t)H% +/O ||u$(7 8) _ Qh('a S)H%ds < Ch2(k+1)‘

here the constant C depends on the exact solution and it is

independent of h, and || - ||o is the L* norm.

Note:

- similar results can be established for smooth solutions of general

nonlinear convection - diffusion equation (Xu and Shu 2007).

-

/
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4 N

Ingredients in the proof:

(1) Projections. Yw € H**1(0,1), define Pw, Qw € V,*, such that

/I(Pw(a:) —w(x))v(x)dx = 0, Pw(x;%) = w(;4 1)

and

[ (@Quia) ~w@)va)ds =0, Quia} ) = ule,

I;

for any v € P*~1(I;). They both satisfy

|w = Puwllo < Cllw|[greesh™ 1, [lw = Qullo < Cwl] s A5

. /
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-

(2) Error equation / Galerkin orthogonality.
Bj(u—un,q—qn;v,p) =0, Vo, pe Vi

here ¢ = u, and

B;j(u,q;v,p) :/'utvd:c—k/'qvxdx—cjjJr%v;Ll +q,_ v’

2
IJ IJ

_$ ~ ; +
—I—/I'quaz—l—/j'vpmdaz VjpiPii1 —I—vj_%p.

J J g
(3) L*-stability. Yv,q € V},

1d ! '
55/0 ’UQdZU—I—/O p2dw§ZBj(’U>p;v,p)

J

-




70

4 N

* Time discretization

e Strong stability preserving Runge-Kutta methods: 3rd order

w) = U™ + AtL(UM)

3 |

w? = 70"+ (w<1) + AtL(w<1>))
1 2

Ut = U 4 (w<2> n AtL(w<2>))

Note: explicit or local time discretization will need At < CAxP (p is the

order of the PDE)

e Other methods (Xia, Xu and Shu 2007): spectral deferred
correction, additive Runge-Kutta method, exponential time

discretization...

- /
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One numerical example: L? errors and orders of accuracy for the LDG
method to the heat equation on (0, 27) with ug(x) = sin(z). Az = 27 /N.

P! P?
N | L? error | order | L* error | order
U
20 | 1.92e-03 - 4.87e-05 -
40 | 4.81e-04 | 2.00 | 6.08e-06 | 3.00
80 | 1.20e-04 | 2.00 | 7.60e-07 | 3.00
q
20 | 1.93e-03 - 4.87e-05 -
40 | 4.81e-04 | 2.00 | 6.08e-06 | 3.00
80 | 1.20e-04 | 2.00 | 7.60e-07 | 3.00

~
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/ ‘ Further discussion I \

(1) LDG methods can be formulated for multi-dimensional scalar

or system of equations:

wet S0 (L) = X ap(us,) = 0, xe€(0,1)%t>0

u(x,0) = wo(x), x¢€(0,1)%
here the matrix with the entry a;;(u) is symmetric, semi-positive
definite, and x = (x1, - ,x4). Examples for multi-dimensional
systems include the compressible Navier-Stokes equations, and the
equations of the hydrodynamic model for semiconductor device

simulation.

- /
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(2) LDG methods with provable stability are available for many
higher order linear or nonlinear PDEs (Yan, Shu, Xu...). Some

examples include

e the KAV equation
U + f(u)g + Upzr =0
e the nonlinear Schrodinger equation
iug + Au+ f(Jul*)u =0
e the Camassa-Holm equation

-
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/(3) Revisit the ‘inconsistent’ DG method for the heat equation: \
/I Up,rvdx + /I Uh, 2z Vzp AT — (@)jJr%v;L% + (th.o) v;f_ =0,

- 1
. . J 2
J J

N[

and Up, » = {Up 2} -
Some remedy:

e Additional term on the left (Baumann and Oden 1999):

_% (('Ua? [unl)jay + (vz [uh])j_%)

e One more integration by parts (Cheng and Shu 2007): k > 1

»/I' (Uh,t’U — Uh’l}a::c) dx — (@)j—l-%vj__|_% + (@)j— ’U_,|_
J

+Up g (”w)j+% — U, 51 (Vs

e Use other discretizations for 2nd order elliptic equations

\ (Arnold, Brezzi, Cockburn and Marini 2002) /
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DG Methods for Hamilton-Jacobi Equations
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Consider
¢t —|_ H(vx¢7 X) — O

with suitable initial and boundary conditions, H(-,-) is the

Hamiltonian.

Challenges to design DG methods: Hamilton-Jacobi (HJ) equations
in general are not in the divergence form.
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Outline
e A central DG method

— Formulation for conservation laws

— How to solve Hamilton-Jacobi equations?

e Other DG methods

-
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/ ‘A central DG method. \

Central DG methods, based on the central scheme and the DG
method, were introduced for hyperbolic conservation laws in (Liu,
Shu, Tadmor and Zhang, 2007 2008)

j—% Ij wj—l—%

Two discrete spaces:

Vi, = Vi = {v:v|;, € P*(I;), Y5}

Wy, =Wy ={v: v, € PM(I;_1), Y5}
Some notations:
Iy =gzl Loy

= [zj-1, 2]
- /
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ﬂ Formulation for conservation laws \

Suppose ¢; € Vi, € Wy, are two approximations to the solution
of ¢y + f(¢), = 0 at t"™, to update the solution at "1 = ¢ + At™:

With the DG discretization in space and the forward Euler in time,
ZH € V), can be updated as follows: Vn € V},

/¢Z+1nda::/ dpndx
I I

N | y
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~

With the spirit of the central scheme on overlapping meshes,
ZH € V,, can be updated based on: Vn € V},

/¢Z+1nda:=/ Yy ndr
I I
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Moreover

/ (bZ”Llnda: = Hn/ Yyndr + (1 — Hn)/ o ndx
I I I

+ A" (/I Fp)nede = f(y 5 a)n, 1+ f<¢?i,j%>"f%>

where 6, = At" /A" € [0,1], AT"™ is the upper bound of the time step
due to the stability condition. With At™ — 0, one gets the
semi-discrete central DG method

1
/ b endas = / (b — bp)nda + / F(n)nda
Ij Tmax J T Ij

J

2

SRR TS L A CINP R O M
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/ e Properties:

— Using overlapping meshes and two sets of numerical

solutions
— Being free of the numerical flux (Riemann solver)
— Allowing larger CFL number than DG methods for k£ > 1

— Sharing some features of standard DG methods

e The L? stability and the error estimate: f(¢) = ad,
1

33 @+ ) == —— [ (o —vn)de <0

¢ — dnllzz + [|¢ — ¥nl|r2 = O(RY)

Numerical order of accuracy: O(hk+1)

e Central DG methods for MHD equations with the ezactly
\ divergence-free magnetic field (L., Xu and Yakovlev)

/
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ﬂ How to solve Hamilton-Jacobi equations? \

The main observation is a reformulation of the central DG methods
for conservation laws: To look for ¢n(-,t) € Vi and ¢p (-, t) € Wh, s.t.

— [ (= onnds — [f@n)lm,

max J ],

[ Gt o gde=—— [ (on—vn)edn = 7G]0 40

Jt+35 Jt+35

| @ni+ 10n)2) mdo =

I

for any n € Vi, £ € Wy and j.

Note. DG method with the upwinding flux for u; + au, = 0 (a > 0):

/ (uh,t + a/uh,x) Uhdaj + a[uh]]—%v]—l_j_l — O
Ij O ) 2/
residual jump at interface

. /
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A central DG method for ¢+ + H(¢4,z) = 0 (L. and Yakovlev 2010):
look for ¢n(-,t) € Vi and ¢p(-,t) € Wy, s.t. for any n € Vi, £ € Wy

/. (On,e + H(WYn,z, ) ndx

I;

— 1 / (¢h — th>77d33 — H,y (Cbh,a:a 33)|$3 Wh]j??j

Tmax I

| it HGnas0)) g
Ij+%
= —— [ O —vnde = B i)l 0]y

Tmax ,
J+ b

Note: - H1(¢z, ) = W.

- The method is the same as the central DG method for conservation laws when

H(V¢) = aV¢. The interface treatment is also used in (Cheng and Shu 2007).

- The L? stability and the error estimate are obtained for linear Hamiltonians.

- /
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Example 1: {

¢t + % — U,
¢(x,0) = — cos(x),

0<x<2r

Qb(oa t) — ¢<27T7 t)

P! P?
N | L? error | order | L? error | order
20 | 1.19e-02 : 5.97e-04 E
40 | 2.99e-03 | 2.00 | 7.60e-05 | 2.97
80 | 7.46e-04 | 2.00 | 9.54e-06 | 2.99
160 | 1.87e-04 | 2.00 | 1.20e-06 | 2.99
320 | 4.67e-05 | 2.00 | 1.50e-07 | 3.00
640 | 1.17e-05 | 2.00 | 1.87e-08 | 3.00

-

Convex Hamiltonian with smooth solution at ¢t = 0.5




36

(Cont’d)

T " LI
numerical solution
exact solution

At t = 1 after the shock forms in ¢,

-
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(Cont’d)
pl p2

N | L? error | order | L? error | order
20 | 1.05e-02 - 1.69e-03 -
40 | 3.16e-03 | 1.73 | 4.80e-04 | 1.82
80 | 5.61e-04 | 2.49 | 2.80e-05 | 4.10
160 | 1.37e-04 | 2.04 | 1.55e-06 | 4.18
320 | 3.43e-05 | 2.00 | 1.82e-07 | 3.08
640 | 8.55e-06 | 2.00 | 2.28e-08 | 3.00

-

Errors and orders in the smooth region: [0, 27]\[3.0, 3.28]




388

/ ¢+ 3(¢n —1)(¢z —4) =0, —-l<z<l \

Example 2:

Qb(il?a 0) = —Q\CB\, outflow bc

Qon—convex Hamiltonian at ¢t = 1 /




89

08

-09F

-11F
12 F

-1.3F

14

exact
limiter 1
limiter 2
no limiter

-15F

-16 F
17 F
-18F

-1.9

-0.5 0 0.5

The role of the nonlinear limiter to capture the viscosity solution, P* with

Q)Iutions, Limiter 2: TVB minmod limiter

N = 100. Limiter 1: TVB minmod limiter based on two copies of numerical

/
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4 N\
Other DG methods'

* Method of (Hu and Shu 1999, L. and Shu 2005): it is
based on the relation of HJ equations and hyperbolic conservation

laws
wi + Vx - F(w,x) =0, with w = Vxo.

New ingredients:

(1) w is approximated by locally curl-free polynomial wy,,
wp e VIl ={v:ive [P YD) Ve xvir =0, VT € Tp,}

- /
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(2) The missing constant in ¢y, is recovered either

— by requiring for each j
| ot Hion0,)ds =0 3
I;

— or, by using (3) to update only one or a few elements, then

after reaching the final time T of the computation, use

B

6B =o(A0)+ [ (udr+dydy), =T,

A

Note: The accuracy is optimal for V¢ and suboptimal for ¢. Generally,
it is necessary to consider the dependence of the components of w for the

accuracy and for resolving steady state solutions.

- /
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* Method of (Cheng and Shu 2006, Bokanowski, Cheng
and Shu): look for ¢ € Vp,

/ (Pn,t + H(dn,e,x)) vdx =

IJ
. Hy(dnomy ) + | Hy(dnws )| | [60],_ 107
3 L8P, Hilone @) 4] g Hilona, o)l Jl0nl;- 30,y
2 2
ap i (Pn,z,T)
1 . o — . I —— _
-3 mgjf; 1<¢h’m’x>_|w£;f; e, @)] lnlj 10,1
2 2

"

ar i (Ph,zsT)

Here H1(¢z,x) = M, ®n,z 1s certain reconstruction of ¢y, , on Ijj:l'

ad)x 2

~

/
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or written as

/ (On,t + H(n,z,)) vdz

I

= —Qy,j (Qbh,aca CU) [¢h]j—

v’
i

with an entropy correction step.

Note:

- The entropy condition is violated at z 1 if

(Hi(¢n2)), 1 <0, (Hi(¢nz))/ 1 >0

2 Jt+3

- When H (¢, x) = ap,, the scheme is the same as the upwind DG
method.

-

/
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/I\/Iethod of (Yan and Osher 2011) \

¢t + H(p,q) =0
D= ¢z, q= Qg

¢t + H(¢ps) =0 &

where H is a consistent monotone numerical Hamiltonian. The method
is: look for ¢, pn,qn € Vi, such that Vi, u,v € Vj,

/' (Cbh,t + ﬁ(p}”qh)) bdz = 0

I

/phuda:—l—/ thumd:c—@;)ﬁ%u;l +(?b;)j_ ul | =0,
I I

J

[ avvdet [ uvade — (@), g0,y + G0,y =0
I, I,

J
with @ = w™ and W = w™.

Note: The method is the standard monotone scheme for piecewise

Q)nstant case. /




