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Mumford Shah Model

Given an image I , find a contour Cin Q , and a piecewise smooth image U

approximating the original image 1 which minimize the energy functional

F"(u,C) = [\ (u=1) + fg\c|w|2 +v[C

_ O
)

where |C| is the length of contour C.

-- data fidelity

-- smooth approximation

-- contour compactness




Piecewise Constant Model

Chan & Vese: IEEE 2001 :
Assumption: Intensity are piecewise constant

inside and outside of the contour C

¢,, xEoutside(C)
u(x) =
c,, x€inside(C)

The model they proposed is to minimize the following energy:

F“(C,c,c,) = A’I_[outside(C)‘] (x)—cl‘2 dx + )\meside(c)‘](x)— 02‘2 dx+v|(

Where )H : Azand V are positive constants, outside(C) and inside(C)

Represent the regions outside and inside the contour C , respectively.



Piecewise Constant Model

Chan & Vese: IEEE 2001 :
Assumption: Intensity are piecewise constant ‘ (P‘

inside and outside of the contour,

u(x,y) = cH(@(x,y)) +c,(1-H(p(x,y))

Remind: Mumford and Shah functional

FMS(u,F)=af(u—l)2dxdy+[3’f| Vu|* dxdy+ u|T|
Q Q\r ¢=O

Consider the following functional
ET(¢,05,9) = a1f| ¢, — 1" H(¢)dxdy+ azﬂ ¢, -1 (1- H(¢))dxdy
Q Q

+u[5(9)| V4 dxdy



Minimization Procedure

How can we minimize F¢/¢ (Cl ,Co s I‘) ?2?7?

EV(c,e08) =@ e, = I H(@)dxdy+at, [l e, = I (1= H(@))dxdy+ 1 [8(9)| Vo dxdy

* start from an initial guess for I
* morph ] and update ¢, and ¢, inthe descent direction of the functional

until they reach the optimal solutions

Keep the contour fixed and minimize the energy:

c/(¢) = [1(x, »)H ()dxdy] [H(@)dxdy ; ¢, = [I(x,y)(1 - H(p))dxdy/ [(1-H(¢))dxdy

Keep ¢, and ¢, fixed and minimize w.rt. ¢

9% _ Ve
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Images with intensity inhomogeneity

, 3
Intensity Images: gray scale images /:Q —> R colorimages :$2—R




Numerical Results:
Difficulty for images with inhomogeneity




Piecewise Smooth Model

Vese & Chan : Int. J. Compute. Vis. 2002 :

Instead of considering piecewise constant inside and outside of the contour C |,

Introduce two functions #* and #~ such that:

u’ (x), xEoutside(C)

%)= u" (x), xEinside(C)

Then the energy functional becomes:

FVCS(u+,u',C)=f (u* =1) +fl (u =1) +

outside(C) nside( C)

2 2
vu'| + f \Vu'\ +v|C
Mj;utsz‘de(C)‘ M inside( C) | |




Minimization Procedure

Instead of considering piecewise constant inside and outside of the contour,

Introduce two functions 3 * and 7~ such that

u(x,y) =u"(x, ) H(@(x,y)) +u (x, )1 - H($(x, y))

Remind: Mumford and Shah functional

F"(u,T) =af(u—])2dxdy+/3f| Vul|* dxdy+ u|T|
Q Q\r

Consider the following functional
E"(u",u,¢)= affu’ -1 * H(p)dxdy+ aflu” -1 | (1- H(¢))dxdy
Q Q

+ B(IVu [ H(@)dxdy+ [| V™ [ (1= H(@)dxdy+ 1 [(9) | Vo xdy
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Piecewise Smooth Model

E" " u,¢)= aﬂ ut =1 H(¢)dxdy+ aﬂ u -1 (1-H(¢))dxdy
+ B[IVu" [ H(@)dxdy+f [V P (1= H(@)dxdy-+ 1 [(6) | Vp

Keep the contour fixed and minimize the energy: Euler-Lagrange equations

u" —1=pAu” on {¢ >0}, ou” =0 on {¢ =0}
n

u —1=pAu" on {¢ <0}, a:—_=00n {¢p =0}
n

Keep u* and U fixed and minimize w.r.t. ¢

%=(5(¢) uv (|V¢|) au” -1y +au -1)

ot + 12 -2
—BIVu | +p|Vu|

Difficulity: At each iteration, 2 pde on irregular domains need to be solved

need to extend u’ and U 11



Region-Scalable Fitting (RSF) Energy Model

Li et al. propose a region-scalable fitting energy model:
2
E(C, f,(x), f,(x)) = EAJUQ K, (x= |- £ dy] dx+v|d

The aim of the kernel function K _ is to put heavier weights on points Y which are close
to the center point X . For simplicity, a Gaussian kernel with a scale parameter g > ()

Was used: 1 2 2
K (u) = ol 120
o (1) 2o’

The level set formulation is:

E, (q),f1 (x), £, (x))= Z)Lif(fKa (x—y)‘[ (y)—fl. (x){2 M! (¢ (y))a’y)a’x+vﬂVHg (gb(x)j dx

where My (¢)=H£ (¢) and M, (¢)=1—H£ (¢)

A level set regularization term P(qb) is used to preserve the regularity of the level set

P(¢)=f%qv¢(x){—l)2 dx

function ¢ :
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Gradient Descent Flow

There, the energy functional to minimize is:

F(¢, £, /)= E. (9. /i, /) + uP(9)

Keep ¢ fixed and minimize the energy:

K, ()= [Mf (gb(x))[ (x)] a
/i (x)- K, ()M (p(x)) L2
Keep f, and f, fixed and minimize w.r.t. ¢ :
Z—f = -6, (¢)(Ae, - Ae, )+vd, (q))a’iv(% +ul V- div(%

where O, is the derivative of {7, , and €, (i = 107”2) is defined as:

e, (x)=fK(7 (y—x)|[(x)—fl.(y)|2 dy, i=12

))

13



Some Results for RSF Model

Sesiosios

(a) Initial contour. (b) 10 iterations. (¢) 20 iterations. (d) 50 iterations.

Fol 0202182

u=0.001x255%,7=0.1,y =1,0 =3.0,4 =4, =1.0




Some Results for RSF Model
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Split Bregman Method for Minimization of
Region-Scalable Fitting Energy

Considering the gradient flow equation in the RSF model:

9 __ _ | YO 29— div| Y2
ol 0, (¢)()t161 Azez)+v6€ (¢)a’zv( ‘w‘ +u| Ve dzv( ‘ng‘ ))
Drop the last term and take V = 1 :
99 Vo
Py =0, (qb)(( Ae +Age, )+ div ‘qu‘

Following the idea from Chan et al. , the stationary solution of the above equation coincides
with the stationary solution of:
99 (- Vo
-Ae + Age, )+ div
ot ( V|

This simplified flow represents the gradient descent for minimization problem

min E((/b) min V¢| < >

ay=¢=b, ap<¢=b,

where the restriction 4y = ¢ =< 0is to guarantee a unique global minimizer and /" = Alel - )Lzez

Then the segmented region can be found for some ¢ E(ao,bo) :

= x:¢(x)>a}
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The new proposed
Region-Scalable Fitting Energy

Replace the standard TV norm TV (¢)=f|V¢| =|V¢| with the weighted version:

TV, (9)- [2lVe|-IVo

, Where
g

£)-——
g(&) e

is the non-negative edge detector function.

Then the minimization problem becomes:

min E(¢)= min

ag=¢=b, ay=¢=b,

ng‘g + <¢,r>

To apply the Split Bregman approach, an auxillary variable j < V¢ is introduced.
Apply Bregman iteration to strictly enforce the constraint d = V¢ ,the resulting sequence
of optimization problems is:

r(¢k+1,c_l>k+1 )= argmin‘c?

ag=¢=h,

oy 2li-vo-bf

¥Bk+1 _ Ek +V¢k+1 _5k+1 17



Apply Spl

it Bregman Method for Minimization

For fixed 4 , minimize w.r.t. ¢ :

Using central discr

operator, the nume

I\

A¢=%+V°(c7—l;), a, <@ <b,

etization for Laplace operator and backward difference for divergence

rical scheme is:

a, =d* ~d* +d’ -d’ -(b" -b +b" b))
>J i-1,j i i j-1 ij i-1,j i\j ij

i,j i,j i,j-1

1

r
ﬁi,j = Z(¢i—l,j +¢i+1,j T +¢i,j+1 _I + a"’f)

\¢i’j = max %nin {/3’ i 1Dy }, a, }

For fixed ¢ , minimize w.rt.  :

d

where

o shrink, (l;k +V¢k+1,%) = shrink(l;k +V¢k+l,§)

Shrink(x,r)=imax (‘x‘—l’,o) 18
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Experimental Results (1):
Segmentation of a synthetic image

Comparison between the proposed method and split Bregman on PC
model

Column 1: the original image and the initial contour
Column 2: the result of our proposed method
Column 3: the result of the split Bregman on PC model
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Experimental Results (2):
Boundary extraction for four challenging
inhomogeneous images

» Top row: original images with initial contours
> Bottom row: segmentation results with final contours

20



Efficiency demonstrated by comparing the iteration
number and computation time with the original RSF

model
Image 1 |Image2 |Image3 |Image4
Our model |32(0.33) |67(1.13) [26(0.49) |[48(0.70)
RSF model [200(1.40) |150(1.74) |300(3.72) |300(3.01)

» From this table, it is clear that our method is more efficient than the RSF
model because we apply the split Bregman approach to the optimization

problem.
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Experimental Results (3):
Segmentation of three synthetic flower images with
different distribution of intensities

> Row 1: piecewise
constant image

> Row 2:
inhomogeneous
clean image

> Row 3:
inhomogeneous
image with noise
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Experimental Results (4):
Detect boundary for a color image of flower

» The curve evolution process from the initial contour to the final
contour is shown above.
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The End

Thank you for vour attention!!

Ques! ons??



