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Basic Path Planning
• Find the optimal path p(s) to a target (or from a source)

– No constraints on the path

• Problem data

– Cost c(x) to pass through each state in the state space

– Set of targets or sources (provides boundary conditions)
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Value Function for Path Planning
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Continuous Dynamic Programming
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Static Hamilton-Jacobi PDE
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Demanding Example?  No!
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Robot Path Planning

• Find shortest path to objective while 

avoiding obstacles

– Obstacle maps from laser scanner

– Configuration space accounts for 

robot shape

– Cost function essentially binary

• Value function measures cost to go

– Solution of Eikonal equation

– Gradient determines optimal control

typical laser scan with 

configuration space obstacles

adaptive

grid
Alton & Mitchell,

“Optimal Path Planning 

under Different Norms in 

Continuous State Spaces,”
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Continuous Value Function Approximation

• Contours are value function

– Constant unit cost in free space, very high cost near obstacles

• Gradient descent to generate the path
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Hamilton-Jacobi Flavours

• Time-dependent Hamilton-Jacobi used for dynamic implicit 

surfaces and finite horizon optimal control / differential games

– Solution continuous but not necessarily differentiable

– Time stepping approximation with high order accurate schemes

– Numerical schemes have conservation law analogues

• Stationary (static) Hamilton-Jacobi used for target based cost to 

go and time to reach problems

– Solution may be discontinuous

– Many competing algorithms, variety of speed & accuracy

– Numerical schemes use characteristics (trajectories) of solution
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Solving Static HJ PDEs

• Two methods available for using time-dependent techniques to 

solve the static problem

– Iterate time-dependent version until Hamiltonian is zero

– Transform into a front propagation problem

• Schemes designed specifically for static HJ PDEs are 

essentially continuous versions of value iteration from dynamic 

programming

– Approximate the value at each node in terms of the values at its 

neighbours (in a consistent manner)

– Details of this process define the “local update”

– Eulerian schemes, plus a variety of semi-Lagrangian

• Result is a collection of coupled nonlinear equations for the 

values of all nodes in terms of all the other nodes

• Two value iteration methods for solving this collection of 

equations: marching and sweeping

– Correspond to label setting and label correcting in graph algorithms
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Cost Depends on…

• So far assumed that cost depends only on position 

• More generally, cost could depend on position and direction of 

motion (eg action / input)

– Variable dependence on position: inhomogenous cost

– Variable dependence on direction: anisotropic cost

• Discrete graph

– Cost is associated with edges instead of nodes

– Dijkstra’s algorithm is essentially unchanged

• Continuous space

– Static HJ PDE no longer reduces to the Eikonal equation

– Gradient of # may not be the optimal direction of motion

– Isotropy is related to but stronger than holonomicity or small time 

local controllability
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Other Static HJ  Issues: Obstacles

original obstacles

• Computational domain should not include (hard) obstacles

– Requires “body-fitted” and often non-acute grid: straightforward in 

2D, challenging in 3D, open problem in 4D+

• Alternative is to give nodes inside the obstacle a very high cost

– Side effect: the obstacle boundary is blurred by interpolation

• Improved resolution around obstacles is possible with semi-

structured adaptive meshes

– Not trivial in higher dimensions; acute meshes may not be possible

semi-structured meshbody fitted mesh
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Adaptive Meshing is Practically Important

• Much of the static HJ literature involves only 

2D and/or fixed Cartesian meshes with 

square aspect ratios

– “Extension to variably spaced or unstructured 

meshes is straightforward…”

• Nontrivial path planning demands adaptive 

meshes

– And configuration space meshing, and 

dynamic meshing, and …

Cartesian mesh’s paths adaptive mesh’s paths

original obstacles

adaptive mesh
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Methods: Direct Time-Dependent Version

• Time-dependent version: replace #(x) → #(t,x) and add 

temporal derivative

– Solve until Dt#(t,x) = 0, so that #(t,x) = #(x)

• Not a good idea

– No reason to believe that Dt#(t,x) → 0 in general

– In limit t → 1, there is no guarantee that #(t,x) remains 

continuous, so numerical methods may fail
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Transform Static to Time-Dependent HJ
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Methods: Time-Dependent Transform

• Equivalent wavefront propagation 

problem [Osher 93]

• Pros: 

– Implicit surface function for 

wavefront is always continuous

– Handles anisotropy

– High order accuracy schemes 

available on uniform Cartesian grid

– Subgrid resolution of obstacles 

through implicit surface 

representation

– ToolboxLS code is available

• Cons: 

– CFL requires many timesteps

– Computation over entire grid at 

each timestep
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Methods: Fast Sweeping

• Gauss-Seidel iteration through the grid

– For a particular node, use a consistent 

update (same as fast marching)

– Several different node orderings are 

used in the hope of quickly propagating 

information along characteristics

– Zhao, Qian, Zhang, Tsai, Osher, Chang, 

Kao, …

• Pros:

– Easy to implement

– handles anisotropy, nonconvexity, 

obtuse unstructured grids

• Cons:

– Multiple sweeps required for 

convergence sweep 3 sweep 4

sweep 1 sweep 2
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Methods: Fast Marching / Ordered Upwind

• Dijkstra’s algorithm with a consistent 

node update formula

– Tsitsiklis, Sethian, Kimmel, 

Vladimirsky, …

• Pros:

– Efficient, single pass

– Isotropic case relatively easy to 

implement

• Cons:

– Random memory access pattern

– No advantage from accurate initial 

guess 

– Requires causality relationship 

between node values

– Anisotropic case trickier to implement
walls
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More General Anisotropic Cost / Speed
• Dirichlet problem for a static Hamilton-Jacobi PDE:

• Control-theoretic Hamiltonian:

• Unit vector controls:

• Speed profile:
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Anisotropy Leads to Causality Problems

• To compute the value at a node, we look back along the optimal 

trajectory (“characteristic”), which may not be the gradient

• Nodes in the simplex containing the characteristic may have 

value greater than the current node

– Under Dijkstra’s algorithm / FMM, only values less than the current 

node are known to be correct

• Ordered upwind extension of FMM searches a larger set of 

simplices to find one whose values are all known

• However, for some anisotropies and grids, regular FMM works
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Speed Profiles

• To ensure continuity of the value function, 

origin must be in the interior (small time locally 

controllable)

• To use Eikonal solvers, speed profile must be a 

circle / sphere at each point

• On an orthogonal grid, FMM will still work for 

axis-aligned anisotropies

• For more general anisotropies, OUM or fast 

sweeping methods are required
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FMM for Axis-Aligned Anisotropies

• FMM can be used on an orthogonal grid for Hamiltonians 

satisfying strict one-sided monotonicity

– Related to “Osher’s criterion” but does not require differentiability

• Alton & Mitchell, SINUM 2008

• Example: two robots moving in the plane
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Ordered Upwind Method (OUM)

[Sethian & Vladimirsky, SINUM, 2003]

• Extension of FMM to solve problems with general convex speed 

profiles in O(N log N)

• Update() looks beyond immediate neighbors to use virtual 
simplices that include nodes within h¨, 

– Anisotropy coefficient ¨ is ratio of fastest to slowest speed 

• Search for such neighbours occurs only on the front of newly 

accepted nodes (Accepted Front OUM / AFOUM)
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Monotone Acceptance OUM (MAOUM)

• Like AFOUM
– extension of FMM to solve problems with general convex 

speed profiles in O(N log N)

• Unlike AFOUM
– Dijkstra-like algorithm: computes solution in order of 

nondecreasing value

– Standard convergence proof [Barles & Souganidis, 1991]

– Simple conversion to a Dial-like algorithm that sorts and 
accepts solution values using buckets

– Stencil size adjusts to the local level of grid refinement

– No accepted front

– Initial pass through grid to generate stencils based on tests 
that can be applied to each potential face of the stencil

– Must store stencils

• Alton & Mitchell, submitted to J. Scientific Computing
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Stencil Generation Algorithm
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Stencil Generation (continued)
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Experiment: Rectangular Speed Profile

• Homogeneous speed profile

• Boundary condition specified at 

origin

• Grid refined where solution and 

characteristics are highly curved
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Results: Rectangular Speed Profile

• MAOUM and AFOUM on uniform and nonuniform

grids

• Maximum and average error versus updates

• Nonuniform grid has better error convergence rate for 

both algorithms than nonuniform grid

• MAOUM on nonuniform grid has smallest error
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Example: Robot Path Planning

• Robot wants to reach goal in minimal time avoiding 

obstacles and fighting a fierce wind

• Solved with new ordered upwind scheme: 

Monotone Acceptance OUM

– Alton & Mitchell, submitted J. Scientific Computing
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with wind with and without wind
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