Reachability: An Application of the Time-Dependent Hamilton-Jacobi Equation

Ian Mitchell
Department of Computer Science
The University of British Columbia

research supported by
National Science and Engineering Research Council of Canada
DARPA Software Enabled Control Project
Hamilton-Jacobi Flavours

• Stationary (static/time-independent) Hamilton-Jacobi used for target based cost to go and time to reach problems

\[H(x, D_x \varphi(x)) = 0 \quad \| \nabla \varphi(x) \| = c(x) \]

 - PDE coupled to boundary conditions
 - Solution may be discontinuous

• Time-dependent Hamilton-Jacobi used for dynamic implicit surfaces and finite horizon optimal control / differential games

\[D_t \phi(x, t) + H(x, D_x \phi(x, t)) = 0 \]

 - PDE coupled to initial/terminal and possibly boundary conditions
 - Solution continuous but not necessarily differentiable

• Other versions exist
 - Discounted and/or infinite horizon
Contents (not strictly ordered)

• Backward reach sets & tubes
 – Treatment of inputs
• Formulation as finite horizon optimal control
 – Implicit surface functions
 – Modification for optimal stopping
• Game of two identical vehicles
 – HJ PDE calculation
 – Analytic solution (almost)
 – Synthesis of safe controls
• Reducing the dimension
 – Systems with terminal integrators
 – Mixed implicit explicit representation
 – Target application: safety for the quadrotor flip
Continuous Backward Reach Tubes

- Set of all states from which trajectories can reach some given target state
 - For example, what states can reach $G(0)$?

\[
x(t) = f(x(t))
\]

Target Set $G(0)$

Backward Reachable Set $G(t)$

\[
x(t) \in G(0)
\]
Verification: Safety Analysis

• Does there exist a trajectory of system H leading from a state in initial set I to a state in terminal set T during some finite time horizon?

Trajectory $\xi_H(s; z, t, u(\cdot)) : T \rightarrow \mathbb{Z}$

- $T = [-T, +T]$ is time interval
- \mathbb{Z} is state space of H
- $s \in T$ is current time
- $z \in \mathbb{Z}$ is initial state
- $t \in T$ is initial time
- $u(\cdot) \in U$ is input signal
Reach Sets vs Reach Tubes

- Start at terminal set and compute backwards

Backward Reach Set $B(H, T, t)$

Backward Reach Tube $B(H, T, [0, t])$

Terminal Set T
Reach Tubes (controlled input)

• For most of our examples, target set is unsafe
• If we can control the input, choose it to avoid the target set
• Backward reachable set is unsafe no matter what we do
• “Minimal” backward reach tube

Continuous System Dynamics

\[
\dot{x}(t) = f(x(t), \nu(t))
\]

\(\forall \nu(\cdot), x(t) \in \mathcal{G}(0)\)
Reach Tubes (uncontrolled input)

- Sometimes we have no control over input signal
 - noise, actions of other agents, unknown system parameters
- It is safest to assume the worst case
- “Maximal” backward reach tube

Continuous System Dynamics
\[\dot{x}(t) = f(x(t), \nu(t)) \]

\[\exists \nu(\cdot), \ x(t) \in \mathcal{G}(0) \]
Two Competing Inputs

- For some systems there are two classes of inputs $\mathbf{v} = (u,v)$
 - Controllable inputs $u \in U$
 - Uncontrollable (disturbance) inputs $v \in V$
- Equivalent to a zero sum differential game formulation
 - If there is an advantage to input ordering, give it to disturbances

Continuous System Dynamics

$$\dot{x}(t) = f(x(t), u(t), v(t))$$

$\forall u(\cdot), \exists v(\cdot), x(t) \in \mathcal{G}(0)$
Calculating Reach Sets & Tubes

- Two primary challenges
 - How to represent set of reachable states
 - How to evolve set according to dynamics
- Discrete systems $x_{k+1} = \delta(x_k)$
 - Enumerate trajectories and states
 - Efficient representations: Binary Decision Diagrams
- Continuous systems $\frac{dx}{dt} = f(x)$?
Implicit Surface Functions

• Set $G(t)$ is defined implicitly by an isosurface of a scalar function $\phi(x,t)$, with several benefits
 – State space dimension does not matter conceptually
 – Surfaces automatically merge and/or separate
 – Geometric quantities are easy to calculate

• Set must have an interior
 – Examples (and counter-examples) shown on board

$$\phi : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R} \quad G(t) = \{x \in \mathbb{R}^n \mid \phi(x, t) \leq 0\}$$
Reach Set as Optimal Control

- Represent the target set as an implicit surface function
 \[T = G(0) = \{ x \mid h(x) \leq 0 \} \]

- Solve an optimal control problem with target set implicit surface function as the terminal cost, and zero running cost
 \[
 \begin{align*}
 \text{initial conditions: } & \quad \xi_f (t; x, t, a(\cdot), b(\cdot)) = x \\
 \text{dynamics: } & \quad \dot{\xi}_f (s; x, t, a(\cdot), b(\cdot)) = f (x, a(s), b(s)) \\
 \text{running cost: } & \quad g(x, a, b) = 0 \\
 \text{terminal cost: } & \quad g_f(x) = h(x)
 \end{align*}
 \]

- Resulting value function is an implicit surface function for the backward reach set
 \[
 V(x, t) = \phi(x, t) = \inf_{\gamma[a(\cdot)](\cdot)} \sup_{a(\cdot)} \left(h \left[\xi_f (0; x, t, a(\cdot), \gamma[a(\cdot)](\cdot)) \right] \right)
 \]
 \[G(t) = \{ x \mid \phi(x, t) \leq 0 \} \]
Game of Two Identical Vehicles

- Classical collision avoidance example
 - Collision occurs if vehicles get within five units of one another
 - Evader chooses turn rate $|a| \leq 1$ to avoid collision
 - Pursuer chooses turn rate $|b| \leq 1$ to cause collision
 - Fixed equal velocity $v_e = v_p = 5$

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix} x_p \\ y_p \\ \theta_p \end{bmatrix} &= \begin{bmatrix} v_p \cos \theta_p \\ v_p \sin \theta_p \\ b \end{bmatrix}
\end{align*}
\]

evader aircraft (control)
pursuer aircraft (disturbance)
Collision Avoidance Computation

- Work in relative coordinates with evader fixed at origin
 - State variables are now relative planar location \((x, y)\) and relative heading \(\psi\)

\[
\frac{d}{dt} \begin{bmatrix} x \\ y \\ \psi \end{bmatrix} = \begin{bmatrix} -v_e + v_p \cos \psi - ay \\ v_p \sin \psi - ax \\ b - a \end{bmatrix} = f(z, a, b)
\]

Target set description
\[
h(x) = \sqrt{x^2 + y^2} - 5
\]
Evolving Reachable Sets

• Modified Hamilton-Jacobi partial differential equation

\[D_t \phi(z, t) + \min \left[0, H(z, D_z \phi(z, t)) \right] = 0 \]

with Hamiltonian: \(H(z, p) = \max_{a \in A} \min_{b \in B} f(z, a, b) \cdot p \)

and terminal conditions: \(\phi(z, 0) = h(z) \)

where

\[G(0) = \{ z \in \mathbb{R}^n \mid h(z) \leq 0 \} \]

and

\[\dot{z} = f(z, a, b) \]

yields

\[G(t) = \{ z \in \mathbb{R}^n \mid \phi(z, -t) \leq 0 \} \]

growth of reachable set

final reachable set
Solving a Differential Game

• Terminal cost differential game for trajectories $\xi_f(\cdot; x, t, a(\cdot), b(\cdot))$

$$\phi(x, t) = \inf_{\gamma[a(\cdot)](\cdot)} \sup_{a(\cdot)} h\left[\xi_f(0; x, t, a(\cdot), \gamma[a(\cdot)](\cdot))\right]$$

where

$$\xi_f(t; x, t, a(\cdot), b(\cdot)) = x$$

$$\xi_f((s; x, t, a(\cdot), b(\cdot)) = f(x, a(s), b(s))$$

terminal payoff function $h(x)$

• Value function solution $\phi(x, t)$ given by viscosity solution to basic Hamilton-Jacobi equation

 – [Evans & Souganidis, 1984]

$$D_t \phi(x, t) + H(x, D_x \phi(x, t)) = 0$$

where

$$H(x, p) = \max_{a \in A} \min_{b \in B} p^T f(x, a, b)$$

$$\phi(x, 0) = h(x)$$
Modification for Optimal Stopping Time

• How to keep trajectories from passing through $G(0)$?
 – Augment disturbance input
 \[
 \tilde{b} = \begin{bmatrix} b & b \end{bmatrix} \quad \text{where } \tilde{b} : [t, 0] \rightarrow [0, 1]
 \]
 \[
 \bar{f}(x, a, \tilde{b}) = b f(x, a, b)
 \]
 – Augmented Hamilton-Jacobi equation solves for reachable set
 \[
 D_t \phi(x, t) + \bar{H}(x, D_x \phi(x, t)) = 0 \quad \text{where } \left\{ \begin{array}{l}
 \bar{H}(x, p) = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T \bar{f}(x, a, \tilde{b}) \\
 \phi(x, 0) = h(x)
 \end{array} \right.
 \]
 – Augmented Hamiltonian is equivalent to modified Hamiltonian
 \[
 \bar{H}(x, p) = \max_{a \in \mathcal{A}} \min_{\tilde{b} \in \mathcal{B}} p^T \bar{f}(x, a, \tilde{b})
 \]
 \[
 = \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} b \min_{b \in [0, 1]} b p^T f(x, a, b)
 \]
 \[
 = \min \left[0, \max_{a \in \mathcal{A}} \min_{b \in \mathcal{B}} p^T f(x, a, b) \right] = \min [0, H(x, p)]
 \]
Analytic Solution

• A. W. Merz (1971) solved differential game of two identical cars
 – Optimal inputs and trajectories
 – Slight modification yield analytic solution to collision avoidance

• Result: analytic collection of points lying on the interface
Validating the Numerical Algorithm

- Analytic solution \(\{x_i\} \) validates interface location

\[
\text{error: } \sum_{i=1}^{N} |\phi(x_i)|
\]
Application: Synthesizing Safe Controllers

- By construction, on the boundary of the unsafe set there exists a control to keep trajectories safe
 - Filter potentially unsafe controls to ensure safety

\[\dot{x} = f(x, u, d) \]

\[\forall x \in \partial G(t), \exists u \in \mathcal{U}, \forall v \in \mathcal{V} \]

\[n(x_1) \cdot f(x, u, v) \geq 0 \]
Synthesizing Safe Controls (No Safety)

- Use reachable sets to guarantee safety
- Basic Rules
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- No filtering of evader input
Synthesizing Safe Controls (Success)

• Use reachable sets to guarantee safety
• Basic Rules
 – Pursuer: turn to head toward evader
 – Evader: turn to head east
• Evader’s input is filtered to guarantee that pursuer does not enter the reachable set

[Diagram showing sets and inputs]
Synthesizing Safe Controls (Failure)

- Use reachable sets to guarantee safety
- Basic Rules
 - Pursuer: turn to head toward evader
 - Evader: turn to head east
- Evader’s input is filtered, but pursuer is already inside reachable set, so collision cannot be avoided
Acoustic Capture

• Modified version of homicidal chauffeur from [Cardaliaguet, Quincampoix & Saint-Pierre, 1999]
 – Pursuer is faster with limited turn radius but fast rotation
 – Evader can move any direction, but speed is lowered near pursuer

• Also solved in relative coordinates

\[
\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = W_p \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \frac{W_p}{R} \begin{bmatrix} y \\ -x \end{bmatrix} b \\
+ 2W_e \min \left(\sqrt{x^2 + y^2}, S \right) a
\]

\[
a \in \mathbb{R}^2, \|a\| \leq 1
\]

\[
b \in [-1, +1]
\]

\[
W_p, W_e, R, S \text{ constant}
\]
Systems with Terminal Integrators

- Common form of system dynamics
 \[
 \dot{y} = f(y, u) \quad \text{coupled states } y \in \mathbb{R}^{d_y}, \\
 \dot{x}_i = b(y) \quad \text{terminal integrator } x_i \in \mathbb{R} \\
 \quad \text{for } i = 1, \ldots, d_x
 \]

- Computational cost of reachability for full system with \(n\) grid points is \(\mathcal{O}(n^{d_y+d_x})\)

- Instead
 - Run two modified HJ PDEs on \(\mathbb{R}^{d_y}\) for each of the \(x_i\) variables
 - States are inside overall reach set only if inside every PDE’s reach set
 - Computational cost \(\mathcal{O}(2d_x n^{d_y})\)

Mixed Implicit Explicit Formulation

- Traditional *implicit* formulation represents sets with an implicit surface function

\[S = \{(x, y) \mid \psi(x, y) \leq 0\} \]

- New *mixed implicit explicit* (MIE) formulation represents sets as an interval in \(x_i \) for every \(i \) and \(y \)

\[S = \{(x, y) \mid \underline{\psi}_i(y) \leq x_i \leq \overline{\psi}_i(y)\} \]
Terminal Integrator’s HJ PDEs

- For scalar terminal integrator \(d_x = 1 \) define target set
 \[S = \left\{ (x, y) \mid \psi_0(y) \leq x \leq \overline{\psi}_0(y) \right\} \]

- If \(x(t, y) = \overline{\psi}(t, y) \) is the upper boundary of the reach set, then formally
 \[b(y) = \frac{d}{dt} x(t, y) = \frac{d}{dt} \overline{\psi}(t, y) = D_t \overline{\psi}(t, y) + D_y \overline{\psi}(t, y) \cdot f(y, u) \]

- Rearrange to find terminal value HJ PDE
 \[D_t \overline{\psi}(t, y) + H \left(t, y, D_x \overline{\psi}(t, y) \right) = 0 \]
 \[\overline{\psi}(0, y) = \overline{\psi}_0(y) \]
 with \(H(t, y, p) = \max_{u \in U} (p \cdot f(y, u) - b(y)) \)

- Repeat with \(x(t, y) = \underline{\psi}(t, y) \) for lower boundary (with adjustment of optimizations)

- Yields backwards reach set
 \[B(S, t) = \left\{ (x, y) \mid \underline{\psi}(t, y) \leq x \leq \overline{\psi}(t, y) \right\} \]
Double Integrator

- Dynamics

\[\dot{y} = f(y, u) = u \quad \dot{x} = y \quad |u| \leq u_{\text{max}} \]

yields terminal integrator Hamiltonian (for upper bound)

\[H(t, y, r, p) = \max_{|u| \leq u_{\text{max}}} (p \cdot u - y) = (|p|u_{\text{max}} - y) \]
Finite Horizon Optimal Control

- Terminal integrator’s dynamics (for $t < 0$) are

\[x(0, y(0)) = x(t, y(t)) + \int_t^0 b(y(s)) ds \]

or

\[x(t, y(t)) = \int_t^0 -b(y(s)) ds + x(0, y(0)) \]

- Can be interpreted as a finite horizon optimal control problem with associated HJ PDE

\[D_t \overline{\psi}(t, y) + H \left(t, y, D_x \overline{\psi}(t, y)\right) = 0 \quad \overline{\psi}(0, y) = \overline{\psi}_0(y) \]

with \(H(t, y, p) = \max_{u \in U} (p \cdot f(y, u) - b(y)) \)

- Solution $\overline{\psi}(t, y)$ provides smallest $x(t, y(t))$ giving rise to a trajectory which reaches the upper boundary $x(0, y(0)) = \overline{\psi}_0(y(0))$ of the target set at $t = 0$
Rotating Double Integrator

- Let \(u \in U = \{ u \in \mathbb{R}^2 \mid \|u\|_2 \leq u_{\text{max}} \} \) and
 \[
 \begin{bmatrix}
 \dot{y}_1 \\
 \dot{y}_2
 \end{bmatrix} = \begin{bmatrix}
 -y_2 \\
 +y_1
 \end{bmatrix} + \mu(\|y\|_2) \begin{bmatrix}
 u_1 \\
 u_2
 \end{bmatrix}, \quad \dot{x} = \|y\|_2
 \]

- Behaves radially like first quadrant of traditional double integrator for \(\mu(\alpha) \equiv 1 \)

- For this experiment, \(\mu(\alpha) = 2 \sin(4\pi\alpha) \)
Pursuit of an Oblivious Vehicle

• Modified game of two identical vehicles
 – Evader has fixed linear velocity and heading
 – Pursuer has linear acceleration and angular velocity as inputs

• Position variables treated as separate terminal integrators

parameters
\[a_p \in [-0.2, +0.2] \]
\[\omega_p \in [-0.2, +0.2] \]
\[v_p \in [1.0, 3.0] \]
\[v_e = 1.0 \]

dynamics
\[
\frac{d}{dt} \begin{bmatrix} \theta \\ v_p \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \omega_p \\ a_p \\ -v_e + v_p \cos \theta \\ v_p \sin \theta \end{bmatrix}
\]

target set description
\[
x_1 \in [-1, +1] \\
x_2 \in [-1, +1]
\]
MIE versus Fully Implicit

- Difficult to visualize four dimensional reach tube
- Projections onto subspaces
 - Directly calculated by MIE formulation
 - Projected as a post-processing step in implicit formulation
MIE Pros and Cons

- MIE computation is much less costly
 - MIE: four HJ PDEs in two dimensions took ~3 seconds
 - Implicit: one HJ PDE in four dimensions took too much memory, but estimated at ~30 hours
- MIE computation works in state space projections
 - Overapproximation of reach tube is inevitable

Slice of reach tube for $v_p = 2.0$ (using backprojection for decoupled formulation)
Safely Switching Control Modes

• One application of reach sets is to determine when it is safe to switch between distinct control modes
 – Final mode has region S_0 within which final mode’s controller is known to be stable
 – Compute $B(S_0, [0, t_0])$ using dynamics for final mode’s controller to determine region within which switch to final mode is safe
 – Pick $S_1 \subset B(S_0, [0, t_0])$ as target for second to last mode
 – Compute $B(S_1, [0, t_1])$ using dynamics for second to last mode’s controller, and so on
Three Dimensions is Child’s Play

• Simplified longitudinal quadrotor dynamics are six dimensional
 – Assumes that out-of-plane dynamics can be stabilized
 – Analysis performed separately on three position / velocity pairs of variables

\[
\begin{align*}
\frac{\partial}{\partial t} \begin{bmatrix}
x \\
\dot{x} \\
y \\
\dot{y} \\
\theta \\
\dot{\theta}
\end{bmatrix} &= \begin{bmatrix}
x \\
\dot{x} \\
y \\
\dot{y} \\
\theta \\
\dot{\theta}
\end{bmatrix} \\
&= \begin{bmatrix}
-\frac{1}{m}C_{Dy} \dot{x} \\
-\frac{1}{m}C_{Dy} \dot{y} \\
-\frac{1}{m}(mg + C_{Dy} \dot{y}) \\
-\frac{1}{I_{yy}}C_{Dy} \dot{\theta} \\
-\frac{1}{I_{yy}}C_{Dy} \dot{\theta}
\end{bmatrix} \\
&+ \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
T_1 \\
T_2
\end{bmatrix}
\end{align*}
\]

Feb 2011
Ian Mitchell, University of British Columbia
Contents (not strictly ordered)

• Backward reach sets & tubes
 – Treatment of inputs
• Formulation as finite horizon optimal control
 – Implicit surface functions
 – Modification for optimal stopping
• Game of two identical vehicles
 – HJ PDE calculation
 – Analytic solution (almost)
 – Synthesis of safe controls
• Reducing the dimension
 – Systems with terminal integrators
 – Mixed implicit explicit representation
 – Target application: safety for the quadrotor flip
Reachability: An Application of the Time-Dependent Hamilton-Jacobi Equation

For more information contact

Ian Mitchell
Department of Computer Science
The University of British Columbia

mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell