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Control Theory

e Control theory is the mathematical study of methods to steer the evolution of
a dynamic system to achieve desired goals

e For example, stability or tracking a reference

e Optimal control is a branch of control theory that seeks to steer the evolution
so as to optimize a specific objective functional

e There are close connections with calculus of variations

e Mathematical study of control requires predictive models of the system
evolution

e Assume Markovian models: everything relevant to future evolution of the
system is captured in the current state

e Many classes of models, but we will talk primarily about deterministic,
continuous state, continuous time systems

e Other continuous models: stochastic DEs, delay DEs, differential algebratic
equations, differential inclusions, ...

e Other classes of dynamic evolution: discrete time (eg: discrete event), discrete
state (eg: Markov chains), ...
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System Models

e Deterministic, continuous state, continuous time systems are often modeled
with ordinary differential equations (ODEs)

(1) = 0 fa(t), u(e)

with state (t) € R%, input u € & C R%, and initial condition z(0) = zg

e To ensure that trajectories are well-posed (they exist and are unique), it is
typically assumed that f is bounded and Lipschitz continuous with respect to x

for fixed u
e The field of system identification studies how to determine f

e An important subclass of system dynamics are linear
t(t) = Ax + Bu

with A € Ré=Xdz gnd B € R% Xdu

e Unless specifically described as “nonlinear control,” most engineering control
theory (academic and practical) assumes linear systems
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Optimal Control Objectives

e Choose input signal
u(-) € U= {u:[0,00[— U | u(-) is measureable}

to minimize the cost functional J(z,u(-)) or J(x,t,u(-))
e Many possible cost functionals exist, such as:

e Finite horizon: given horizon 7" > 0, running cost ¢ and terminal cost g

J(@(t),t,u(-)) £ /t (xz(s),u(s)) ds + g(x(T))
e Minimum time: given target set 7 C R%

min{t | z(t) € T}, if {t|z(t) € T} #0;

~+00, otherwise

J(zo,u(")) £ {
e Discounted infinite horizon: given discount factor A > 0 and running cost /
Hao () 2 [ tlals) uls)e ™ ds
0

e Alternatively, “maximize payoff functionals” or “optimize objective functionals”
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Value Functions

e The value function specifies the best possible value of the cost functional
starting from each state (and possibly time)

Viz) = u(lr)lgu J(x,u(-)) or Viz,t) = u(u;lgu J(x,t,u(-))

e Infimum may not be achievable

o If infimum is attained then the (possibly non-unique) optimal input is often
designated u™(-), and sometimes the corresponding optimal trajectory is
designated =™ (-)

e Intuitively, to find the best trajectory from a point x, go to a neighbour = of x
which minimizes the sum of the cost from x to £ and the cost to go from z.

e This intuition is formalized in the dynamic programming principle
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Dynamic Programming Principle

e For concreteness, we assume a finite horizon objective with horizon 1T', running
cost /(x,u) and terminal cost g(x)

e Dynamic Programming Principle (DPP): for each h > 0 small enough that
t+h<T

t+h
Viz,t) = (iI)lfu [/ l(x(s),u(s))ds+V(z(t+h),t+h)
u(-)e t
e Similar DPP can be formulated for other objective functionals
e Proof [Evans, chapter 10.3.2] in two parts: For any € > 0
e Show that V(z,t) < inf,(, [ R (), u(s)) ds + V(z(t + h),t + h)} T
e Show that V(z,t) > infy., [ [ 0(2(s), u(s)) ds + V(z(t + h), £+ h)} e
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Proof of DPP (upper bound part 1)

Consider V' (z,1)
e Choose any u1(-) and define the trajectory

t1(s) = f(z1(s),u1(s)) for s >t and z1(t) =z

e Fix ¢ > 0 and choose us(-) such that

T

V(zi(t+h),t+h)+¢e> /t+h U(xa(s),usz(s))ds + g(x2(T))

where
ta(s) = f(x2(s),ua(s)) for s >t + h and xo(t + h) = x1(t + h)
e Define a new control

us(s) = {ul(s)’ if s €[t,t+h;

us(s), ifselt+h,T]
which gives rise to trajectory

t3(s) = f(x3(s),us(s)) for s >t and z3(t) ==
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Proof of DPP (upper bound part 2)

e By uniqueness of solutions of ODEs

(s) = x1(s), ifselt,t+ hl;
A xa(s), ifset+h,T]

e Consequently

V(L) < J(&,t,us(-))

_ /t 0(w3(s), us(s)) ds + g(x3(T))
t+h T
:/t E(gjl(s),ul(s))ds—l—/t U(wa(s), uz(s)) ds + g(x2(T))

+h
< /tt_'_h B(xl(s), ul(s)) ds + V(Qﬁl(t + h),t + h) + €

e Since uq(-) was arbitrary, it must be that

) | t+h
Viz,t) < u(uglgu [/t l(x(s),u(s))ds+V(x(t+h),t+h)| +¢

Optimal Control & Viscosity Solutions lan M. Mitchell— UBC Computer Science 10/ 41



Proof of DPP (lower bound)

e Fix ¢ > 0 and choose u4(-) such that

V(1) > / 0(4(5), ua(s)) ds + g4 (T)) — ¢
where
t4(8) = f(xa(s),us(s)) for s >t and z4(t) =

e From the definition of the value function

V(za(t+h),t+h) < / l(x4(s), us(s)) ds + g(x4(T))
t+h
e Consequently

) | t+h
V(z,t) > u(lr)lgu [/t l(x(s),u(s))ds+ V(z(t+h),t+h)| +¢
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A Formal Derivation of the Hamilton-Jacobi PDE (part 1)

o Assume that V' (x,t) is smooth
e Start from rearranged DPP

inf
u(-)eul

t+h
V(z(t+h),t+h)—V(x,t)+ /t 0(x(s),u(s)) ds] =0

e Divide through by h > 0

B | b
g [V Vi) 1 [ ooyt ds] 0
o let h— 0

. d .
u(u;lgﬂ [EV(x,t) + £(x(t), u(t))] =0

e Apply chain rule on first term

. d _
u(lr)lgu [DtV(x,t) + D, V(z,t) - El’(t) + £(x(t), u(t))] =0
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A Formal Derivation of the Hamilton-Jacobi PDE (part 2)

e Introduce system dynamics & = f(z,u)

JnE DV () 4+ DoV () - f((8), u(®) + (), u(t))] =0

e Observe that only dependence on u(-) € Uis u(t) =u €U

Jrelz{j{ DV (x,t) + D,V (x,t)- f(x,u) +L(x,u)] =0

e If U is compact, infimum becomes minimum

o Arrive at (time-dependent) Hamilton-Jacobi(-Bellman) PDE
DV (x,t)+ H (x, D,V (x,t)) =0
with Hamiltonian

H(z,p) = inf [p- f(z,u) + £(z,v)

and terminal conditions (choose ¢t = T in definition of V)
V(z,T) = g(x)
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No Classical Solutions

e Unfortunately, even for smooth terminal conditions, running cost and
dynamics, solution of HJ PDE may not remain differentiable for all time

e A rigorous derivation must take into account that the value function may not be
differentiable, and that the optimal input and/or trajectory may not be unique
or may not exist

e Search for well-posed weak solutions included the vanishing viscosity solution

e For € > 0, the semilinear or quasilinear parabolic PDE
DV(x,t)+ H (t,x, D,V (x,t)) = e AV (x,1)

has a smooth solution for all time
e The vanishing viscosity solution is the limiting solution as ¢ — 0
e Unfortunately, it does not always exist
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Viscosity Solutions

e Crandall & Lions (1983) propose the ‘“viscosity solution”

e Under reasonable conditions there exists a unique viscosity solution

e Anywhere that V is differentiable, it solves the HJ PDE in the classical sense

e If there exists a vanishing viscosity solution, then it is the same as the viscosity
solution

e Original definition has been supplanted by an equivalent definition from
Crandall, Evans & Lions (1984): V (x,t) is a viscosity solution of the
terminal value HJ PDE

DV (z,t)+ H(z, D,V (x,t)) =0
V(z,T) = g(z)
if V' satisfies the terminal conditions and for each smooth ¢(x,t)
o if V(x,t) — ¢(x,t) has a local maximum then
Dip(x,t) + H(x, Dyop(x,t)) > 0
o if V(x,t) — ¢(x,t) has a local minimum then
Dip(x,t) + H(x, Dyop(x,t)) <0

e For initial value HJ PDE, reverse the inequalities
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Assumptions and Bounds

e Assume that dynamics, running and terminal costs are bounded and Lipschitz
continuous: there exists a constant (' such that for fixed

|f(z,u)| <C F(z,a) — f(&,a)| < Clz — 2
l(z,u)| <C l(z,a) —l(z,0)| < Clx —z
g(z)| < C lg(x) —g(2)| < Clx — =z

e This assumption implies continuity properties for the Hamiltonian, but more
generally we could assume such properties: there exists a constant C' such that
|H(z,p) — H(Z,p)| < Clz —2[(1 + |p|)

e Then it can be shown that the value function is bounded and Lipschitz
continuous: there exists a constant C

V(x,t)| <C
V(z,t) = V(1) < C(lz— &+ |t — )
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Proof: Value Function is the Viscosity Solution
(terminal condition and local maximum part 1)

e From the definition of the value function and objective functional
T
V(e.T) = int J(a, Tou() = [ tla(s).uls)) ds + g(a(T)) = g(a
u (- T

e Choose smooth ¢ and assume that V' — ¢ has a local maximum at (, )
e Then we must show

Di(#, 1) + min [Dad (i, 1) - F(F,w) + 03, w)] >0

e Since V — ¢ has a local maximum, choose 0 > 0 such that for all
lz— 2|+t —1] <6
(V o gb)(:c,t) < (V o Qb)(:%a Z?)
e Proof proceeds by contradiction: if the inequality is false then there exist 4. € U
and £ > 0 such that for all |x — | + |t — | < § we have

e Choose constant control u(-) = @ and define the corresponding trajectory
©(s) = f(x(s),a) for s >t and z(t) = &
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Proof: Value Function is the Viscosity Solution
(local maximum part 2)

e Working on contradiction if V' — ¢ has a local maximum at
e Choose h € [0, ] small enough that |x(s) — &| < ¢ for s € [t,

Dtgb(CU(S),

e Because V' — ¢ has a local maximum

V(z(t+h),t+h)

e From the DPP

e Therefore we arrive at the contradiction

t+h
0< / Dip(x(s
t
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);8) + Dap(2(s),
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1)
+ h] so that

S~

T
f

s) + Dap(x(s),5) - f(x(s), 1) + £(2(s),0) < =&

— V(&%) < ¢p(x(t+ h),t+ h) — ¢(&,1)

s)- f(z(s),u) +£(x(s),a)ds < —Eh
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Proof: Value Function is the Viscosity Solution
(local minimum part 1)

e Choose smooth ¢ and assume that V — ¢ has a local minimum at (&, t)

e Then we must show

Di(#,1) + min [Dag(#, ) - f(&,u) + £(2,u)] <0

e Since V — ¢ has a local minimum, choose 6 > 0 such that for all
lz— 2|+t —1] <6
(V o gb)(ib,t) 2 (V o qb)(ia Z?)
e Proof proceeds by contradiction: if the inequality is false then there exists & > 0
such that for all & € U and |z — &| + |t — | < & we have

Dio(x,t) + Dop(x,t) - f(z,0) +4(x,u) > & >0

e For any control u(-) € 4 choose h € [0, 4] small enough that |z(s) — x| < d for
s € [t,1 + h] and the corresponding trajectory

©(s) = f(x(s),u(s)) for s >t and z(t) = &
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Proof: Value Function is the Viscosity Solution
(local minimum part 2)

A

e Working on contradiction if V — ¢ has a local minimum at (Z,t)

e Because V' — ¢ has a local minimum

V(z(E+h),t+h)—V(2,1) > ¢(x(t + h),t+ h) — &(%,%)
t+h d
= [ g5 ds
t+h

e From the DPP we can choose a control u(-) € 4 such that

t+h
V(2 i) > /t 0(x(s), u(s)) ds + V(z(E + h), £ + h) — %h

e Therefore we arrive at the contradiction

t+h
%h = /t Di¢(x(s),s) + Dag(x(s),s) - fx(s),u(s)) + £(z(s), u(s)) ds = &h
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Synthesizing an Optimal Control

o Given (viscosity) solution V(x,t), the optimal control is

u*(x,t) € argmin [D,V (x,t) - f(x,u) + {(x,u)]
ueld

e Such a control is called a time-dependent feedback control since it depends on
the current time and state

e Optimal choice may not be unique

e Issues arise when V' (x,t) is not differentiable, gradient is zero and/or
Hamiltonian is (locally) independent of input

Optimal Control & Viscosity Solutions lan M. Mitchell— UBC Computer Science 23/ 41



Outline

e Optimal control: models of system dynamics and objective functionals
e The value function and the dynamic programming principle

o A formal derivation of the Hamilton-Jacobi(-Bellman) equation

e Viscosity solutions and a rigorous derivation

e Other types of Hamilton-Jacobi equations in control

e Optimal control problems with analytic solutions

e References

Optimal Control & Viscosity Solutions lan M. Mitchell— UBC Computer Science 24/ 41



Hamilton-Jacobi Equations for Discounted Infinite Horizon

e Given discount factor A > 0 and running cost ¢, objective is

o u() = | " a(s), u(s))e ds

e The value function V(z) = inf,,(.)cy J(x, u(-)) satisfies the dynamic
programming principle

V(z) = inf /h 0(x(s), u(s)e”** ds + V(x(h))e
u(-)eu [ 0

and static HJ PDE

AV (x) — ZHEI{{I 1D,V (z)- f(x,u) +l(x,u)] =0 for x € R%

e Another relatively well behaved problem

e Similar results to finite horizon problem: viscosity solution V() is bounded and
continuous but not necessarily differentiable
e Optimal feedback input is time-independent
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Hamilton-Jacobi Equations for Minimum Time

e Given target 7T, objective is

min{t | z(t) € T}, if {t|z(t) € T} # 0;

+00, otherwise

J(zo, u(-)) = {

o Let @ ={z | V(x) < oo} be the set of states that give rise to trajectories
which can reach the target set in finite time

e The value function V(z) = inf,,(.)ey J(x, u(-)) satisfies the dynamic
programming principle for z € ()

Viz) = u(11)1£u [h+ V(x(h))] if h <V (x)

and static boundary value HJ PDE

H(z,D,V(x)) =min[D,V(z)- f(z,u) —1] =0 forx e Q\T

uel

V() =0 forxzeT
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Small Time Local Controllability and the Static HJ PDE

o A system is small time locally controllable (STLC) at a state x if the set of
states which give rise to trajectories which reach x contains z in its interior for
all positive times

e Intuitively, the system can move in any direction
e Many important types of system are not STLC

e If dynamics are STLC everywhere then the static HJ PDE is relatively well
behaved: the viscosity solution V() is bounded and continuous (but not
necessarily differentiable) and Q) = R9

e If dynamics are not STLC then there may not be a bounded continuous
viscosity solution which solves the PDE and/or €2 must be determined
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Disturbance Parameters

Sometimes the dynamics are influenced by additional parameters

jZ:f(ZU,’LL,’U)

where v € R% are not known and are not controllable. There are two typical ways
of treating these disturbance inputs

e Stochastic: v(t) ~ V where V is some distribution

e Modelled by stochastic differential equations (SDEs) in continuous case, or
various probabilistic models in discrete settings (Markov chains, discrete state

Poisson processes, etc)
e Optimal control of SDEs leads to Fokker-Plank or Kolmogorov PDEs: second

order versions of the HJ PDE
e Bounded value: v(t) € V where ¥ C R% is a specified set

e Modelled by standard ODEs with multiple inputs
e Robust or worst-case treatment of disturbance input is modelled by two player

zero sum games and HJ PDE with nonconvex Hamiltonians
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Dynamics, Objective Functional and Player Knowledge
in Differential Games

e Dynamics and objective functional are almost the same as in the single input
case; for example

#(t) = F(e(t),ult),v(t))
J(@ (), tu(), v()) = / (), uls), v(s)) ds + g(a(T))

e Control input u(-) € Y attempts to minimize
e Disturbance input v(-) € ¥ attempts to maximize

e In a differential setting, how much does each player know about the other'’s
choice of input?

e A non-anticipative strategy allows one player to know the other player’s
current input value

e However, the player with the additional knowledge must declare their strategy
(reaction to every input) in advance

e For example, the disturbance can be given the advantage by permitting it a
non-anticipative strategy -y

B . u(r) = u(r) for almost every r € [t,T]
vel) = {C Ao —> (lu|(r) = (|u](r) for almost every r € [t,T] }
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Hamilton-Jacobi(-Isaacs) Equations for Differential Games

e Value function is then an optimization over the appropriate strategy and input
signal; for example
V(z,t) = sup inf J(z,t, u(),y[u(-)|(-))

~vel(¢) u(-)ed

e This choice is called the upper value function because the maximizing
disturbance is given the advantage of the non-anticipative strategy

e A dual lower value function can be defined

e |If the upper and lower value functions are equivalent, then both optimal inputs
can be synthesized without strategies as pure state feedback

e The value function satisfies the DPP

t+h
V(z,t) = sup inf / 0(x(s),u(s),vul(s))ds+V(x(t+h),t+ h)
~vel(¢) u()ed | Jy
and the HJ PDE
DV (z,t)+ H (x, D,V (x,t)) =0

H(ﬂ?,p) = min max [p ) f(ZE', u, U) + g(ﬂf, u, U)]
ueld vey
e Optimization in Hamiltonian requires no special treatment of strategies, but it is

nonconvex
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Fokker-Planck or Kolmogorov Equations
for Optimal Stochastic Control

e For system dynamics given by the (It3) stochastic ordinary differential
equation (SDE)

dx(t) = f(x(t),u(t))dt + o(x(t))dW (t)

where the (controlled) “drift term” f is the same as in the deterministic ODE
case and the “diffusion term” providing the stochastic disturbance is
o :R% — R and a dy dimensional Wiener process W (t)

e For the finite horizon objective, the value function satisfies a Fokker-Planck or
backward Kolmogorov PDE

D,V (z,t) + min [D,V (z,t) - f(z,u) + £(z,u)] + 2o(z)o’ () D2V (z,t) =0

ueU

N[

e If dw = d, and o is full rank then the PDE is semilinear or quasilinear and
under mild assumptions has a classical solution
e Otherwise the PDE is degenerate parabolic and a viscosity solution is the

appropriate weak solution
e Note that solution evolution is no longer governed entirely by characteristics
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Other Control Applications with HJ PDEs

e State estimation / observation

e |n most real systems we can only observe sensor outputs—the true state is not
directly observable
e State estimation can be formulated as various types of HJ PDE, depending on

the noise model
e Optimal control subject to state uncertainty can be formulated as an infinite

dimensional HJ equation
e Optimal stopping times

e In some problems the control (or disturbance) can choose the stopping time
e Can be formulated as a variational inequality; for example, for finite horizon
objective functional with stopping / terminal cost g(x)

max [DV (z,t) + H(x, D,V (x,t)),V(z,t) — g(x)] =0

e Reachability

e Next set of slides

e Many more. ..
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Finite Horizon: LQR Formulation

e In the Linear Quadratic Regulator (LQR) problem

e The dynamics are linear
r = Az + Bu

with u € U = R%™
e The finite horizon objective is quadratic

J(@,tu(-)) = uT (T)Qyu(T) + / 27 (5)Qu(s) + u” (s)Ru(s) ds

where Q¢ = Q}f >0, Q=Q" >0, and R=R" > 0 are the terminal state
cost, the running state cost, and the input cost matrices respectively
e |t can be shown that the value function is quadratic in the state

Vz,t) = ugglgu J(x, t,u()) =z P(t)x
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Finite Horizon: LQR Solution (part 1)

e Analytic solution can be constructed from a dynamic programming argument

e Start at state & and take u(s) = 4 fixed over a small time interval s € [t,t + h]
e Cost incurred is

t+h
/ T T (9Qu(s) + uT (s)Ru(s) ds ~ h(3TQé + aTRa)

o State after that time period is z(t + h) =~ & + h(Az + Ba)
e Value function at that new state is

V(z(t+h),t+h)=z" (t+h)P({t+h)z(t+h)
~ (& + h(AZ + Ba))" (P(t) + hP(t)) (& + h(Az + B1))
(A% +Ba)"

i
P(t)i
~ 3 ' P(t)Z +h ( )T .
+iP(t)(AZ + Ba) + 2" P(t)2
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Finite Horizon: LQR Solution (part 2)

e Dynamic programming derivation of LQR solution
e Dynamic programming principle

o T
V(z,t) = ur(p)igu [/t r (s)Qx(s) +u (s)Ru(s)ds+ V(z(t+ h),t+ h)

h(z' Qi + 4’ Ra) + 3" P(t)z
' P(t)# = min (Az 4+ Ba) P(t)z
a€Rdu | Lh ,
I (—I—:ifP(t)(Ag?: + Ba) + 2" P(t) > |
' Qi+ 4" Riu+ (Az + Ba) P(t)i]
+iP(t)(Ad + Ba) + &' P(t)z
e Set derivative with respect to 4 to be zero to find optimal 4
o2h(tR+ & P(t)B) =0
@* = -R'B'"P(t)&

0 = min
a€RAu

e Substitute " into dynamic programming equation and solve for P(¢) to find
Riccati differential equation

—P(t) = ATP(t) + P(1)A — P()BR'BTP(t) + Q
with terminal condition P(7T) = Q;
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(In)Finite Horizon: Steady State LQR

e In conclusion: LQR value function is V (z,t) = 21 P(t)x where P(t) is the
solution to a terminal value (matrix) ODE

e In practice, P(¢) and 4* rapidly converge to steady state values

e Solve (continuous time) algebraic Riccati equation for steady state P
AP+ PA-PBR 'B'P+Q=0

e Time-independent state feedback given by
u(t) = Kz(t) where K= —R'B'P

e See Stanford’'s EE363: Linear Dynamical Systems (Stephen Boyd)
http://www.stanford.edu/class/ee363/

e This and several more derivations given in lecture notes 4 (Continuous LQR)
e Other lectures discuss discrete time, Kalman filter (eg: LQR for state
estimation), ...

e See any textbook on “state space” / “modern” control
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Minimum Time: Double Integrator

e The double integrator is one of the simplest systems which is not STLC

e System states are position x1 and velocity x2, and the input is the acceleration
ueld=|[-1,+1]

_ L2
o If target is the origin
(3324—\/4:1:14—23:%, if 1 > %:132 Tsl;
Viz) = —xz9 + \/—4331 + 223, if 1y < %xg Zol;
\|$2‘, if £1 < %xz o

e Dynamics are small time controllable at the origin, so value function is

continuous, but not Lipschitz continuous
e Optimal trajectories / characteristics travel along the curve where Lipschitz

continuity fails
o If target set is not a circle, value function is discontinuous

e See Optimal Control, Athans & Falb (1966) or Applied Optimal Control,
Bryson & Ho (1975) or many others
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Known Solutions for More Complex Dynamics (part 1)

e Unicycle model:

T vcosd
r = |x9 T = |vsin6
0 W

where (x1,x2) is position in the plane, 6 is heading, v is linear velocity and w
Is angular velocity

e Dubins’ car: Unicycle with fixed positive linear velocity and bounded angular
velocity

e Alternative viewpoint: unicycle with minimum turn radius

e Minimum time to reach is generally discontinuous

e Extensive study of combinatorial aspects of optimal paths in robotics literature:
optimal paths include CCC or CSC forms, where C is a minimum radius left or
right arc of a circle (possibly of zero length) and S is a straight segment

e For example, see Bui, Boissonnat, Soueres & Laumond, “Shortest Path
Synthesis for Dubins Non-holonomic Robot,” ICRA 1994
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Known Solutions for More Complex Dynamics (part 2)

e Game of two identical vehicles: Collision avoidance with two adversarial
Dubins’ cars

e Solved in relative coordinate system, so state space remains three dimensional

e Reachability problem becomes a two player zero sum differential game becomes
a HJI PDE

e Analytic optimal trajectories can also be enumerated and points on the
boundary of the reachable set determined

e Optimal characteristics both converge and diverge, causing challenges for
Lagrangian approaches

e More details in subsequent set of slides

e See Mitchell, “Games of Two Identical Vehicles,” Stanford University
Department of Aeronautics and Astronautics Report (SUDAAR) 740 (2001).

e In summary, there is no shortage of toy optimal control problems with analytic
solutions

e On the other hand, there is no shortage of real optimal control problems
without analytic solutions
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Viscosity Solution & Control References

Crandall & Lions (1983) original publication
Crandall, Evans & Lions (1984) current formulation
Evans & Souganidis (1984) for differential games

Crandall, Ishii & Lions (1992) “User’'s guide” for viscosity solutions of
degenerate ellipic and parabolic equations (dense reading)

Viscosity Solutions & Applications Springer Lecture Notes in Mathematics
(1995), featuring Bardi, Crandall, Evans, Soner & Souganidis
(Capuzzo-Dolcetta & Lions eds)

Optimal Control & Viscosity Solutions of Hamilton-Jacobi-Bellman Equations,
Bardi & Capuzzo-Dolcetta (1997)

Partial Differential Equations, Evans (3rd ed, 2002)
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