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Monge-Ampère equation

det(D2u(x)) = f (x), for x in Ω. (MA)

u is convex, (C)

u(x) = g(x), for x on ∂Ω. (D)

det(D2u), is the determinant of the Hessian of the function u.
Ω ⊂ Rd is a convex bounded subset with boundary ∂Ω,



Visualization of solution and gradient map

Example

u(x) = exp

(
|x|2

2

)
, f (x) = (1 + |x|2) exp(|x|2).
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Figure: The solution u(x). The image of mapping y = ∇u(x)



Application: Optimal Transportation Problem

Map from one domain onto another, with given volume distortion.

det(D2u(x)) = f (x)

∇u(x) : A→ B
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Figure: The image of mapping y = ∇u(x) [Froese]



Application: mappings with controlled volume distortion

Generate mappings with controlled volume distortion.

det(D2u(x)) =

{
1, in most of Ω

Large, elsewhere

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure: The image of mapping y = ∇u(x)

(Also bounds on volume distortion in a larger variational problem.)



Related numerical works

Early work:

Oliker [OP88], converges to the Aleksandrov solution in two
dimensions. Very small problem size.

Benamou and Brenier [BB00] fluid mechanical approach for
the optimal transportation problem.

Recent work (representative):

Publicized by Glowinski at ICIAM 07. Dean and
Glowinski [DG08, DG06, Glo09].

Feng and Neilan, [FN09a, FN09b] and Neilan, Brenner, et. al.

Loeper [LR05], in the periodic case (see also Frisch [ZPF10])

Haber and Haker for Benamou-Brenier method.



Comments on related work

None of the other schemes have convergence proofs. Indeed, they
all break down on singular solutions.

A number of recent papers use other numerical methods, e.g.
FEM to solve the equation.

Proof of consistency and stability for smooth solutions [Neilan
Brenner], [Bohmer]. Even in the smooth case, this is not a
convergence proof.

No other results for weak solutions.

We provide evidence that non-monotone methods break down
near singular solutions

Solvers slow down near non-smooth solutions



Summary of Results

A finite difference solver for the Monge-Ampère equation,
which converges to viscosity solution (even for singular
solutions).

Proof of convergence for a monotone scheme

Fast solver using modified Newton’s method, O(M1.3)

A more accurate discretization away from singularities

Summary: fast, accurate solver for fully nonlinear equation, effort
comparable to solving a linear PDE several (ten) times.



Analysis and weak solutions

Linearization

Definition of weak solutions

Regularity theory

Convexity



Linearization and ellipticity

Lemma

Let u ∈ C 2. The linearization of the Monge-Ampère operator is
elliptic if D2u is positive definite or, equivalently, if u is (strictly)
convex.

Linearization of the Monge-Ampère operator, when u ∈ C 2:

∇M det(D2u)(v) = trace
(
(D2u)adj D

2(v)
)
.

Example (two dimensions)

∇M det(D2u)v = uxx vyy + uyy vxx − 2uxy vxy



Regularity

The Monge-Ampère equation

det(D2u(x)) = f (x), for x in Ω. (MA)

u(x) = g(x), for x on ∂Ω. (D)

u is convex, (C)

has a unique C 2,α solution, see [CNS84, Urb86, Caf90] [Gut01]
under the following conditions.

The domain Ω is strictly convex with boundary ∂Ω ∈ C 2,α.

The boundary values g ∈ C 2,α(∂Ω).

The function f ∈ Cα(Ω) is strictly positive.

Regularity determines precisely when a monotone scheme is
needed

Other methods break down (100 × slower) when
max f /min f > 40

Our methods fast independent of f .



Viscosity solutions

Definition

Let u ∈ C (Ω) be convex and f ≥ 0 be continuous. The function u
is a viscosity subsolution (supersolution) of the Monge-Ampère
equation in Ω if whenever convex φ ∈ C 2(Ω) and x0 ∈ Ω are such
that (u − φ)(x) ≤ (≥)(u − φ)(x0) for all x in a neighbourhood of
x0, then we must have

det(D2φ(x0)) ≥ (≤)f (x0).

The function u is a viscosity solution if it is both a viscosity
subsolution and supersolution.

u

φ



A PDE for convexity

Convexity:
λ1(D2u) ≥ 0,

where λ1[D2u] is the smallest eigenvalue of the Hessian of u.
The convexity constraint can be absorbed into the PDE operator

det+(M) =
d∏

j=1

λ+
j (1)

where M is a symmetric matrix, with eigenvalues, λ1 ≤ . . . ,≤ λn

and
x+ = max(x , 0).



Finite Difference Discretization

Summary:

Standard finite difference scheme

Wide stencil schemes (in general)

Local variational characterization of the operator

Convergence theorem

Hybrid discretization: more accuracy in regular regions. (lose
convergence proof)



Convergence

Theorem (Barles-Souganidis convergence)

The solutions of a consistent, monotone finite difference scheme
converge uniformly to the unique viscosity solution of (MA).

Idea: F ε → F (consistency)
F ε[ue ] = f (approximate solutions).
Want: uε → u (convergence).
Require: stability in L∞ via the comparison principle.
Remark: Most numerical schemes give stability in a weaker norm,
which does not allow to pass to limit in nonlinear PDE.
Remark: require wide stencils to obtain a monotone discretization.



Variational characterization of the determinant

Lemma (Variational characterization of the determinant)

Let A be a d × d symmetric positive definite matrix with
eigenvalues λj and let V be the set of all orthonormal bases of Rd :

V = {(ν1, . . . , νd ) | νj ∈ Rd , νi ⊥ νj if i 6= j , ‖νj‖2 = 1}.

Then the determinant of A is equivalent to

d∏
j=1

λj = min
(ν1,...,νd )∈V

d∏
j=1

νT
j Aνj .



Wide stencils

The finite difference operator in grid direction ν,

Dννui =
1

|ν| h2
(u(xi + νh) + u(xi − νh)− 2u(xi )) .

Additional term in the consistency error coming from the angular
resolution dθ of the stencil.

(a) In the interior. (b) Near the boundary.

Figure: Wide stencils on a two dimensional grid.



Discretization of convexified Monge-Ampère operator

For a C 2 function u:

det+(D2φ) = min
{ν1...νd}∈V

d∏
j=1

(
∂2φ

∂ν2
j

)+

.

On a finite difference grid, G grid directions,

MAM [u] ≡ min
{ν1...νd}∈G

d∏
j=1

(
Dνjνj u

)+
(MA)M



Solution Methods

Overview of solution methods.



Explicit Solution Method

Simplest,
un+1 = un + dt(MA[un]− f ).

Converges if the monotone discretization is used.

Does not converge if standard finite differences are used: no
selection principle for convex solution

Slow due to CFL condition

dt = O(h2).

This was the approach used in [Obe08].



Semi-Implicit solution method (2d)

Use identity for the Laplacian in two dimensions,

|∆u| =
√

(∆u)2 =
√

u2
xx + u2

yy + 2uxx uyy . (2)

So if u solves the Monge-Ampère equation, then

|∆u| =
√

u2
xx + u2

yy + 2u2
xy + 2f =

√
|D2u|2 + 2f

Semi-implicit scheme

∆un+1 =

√
2f + |D2un|2 (3)



Implementation of Newton’s method

Challenging in singular case - like N.M for (x+)2 near 0.
To solve the discretized equation

MAH [u] = f

The corrector v n solves the linear system(
∇uMAH [un]

)
v n = MAH [un]− f .

Theorem

Convergence of Newton’s method in continuous case under
regularity assumptions (extension of [LR05]) and in the discrete
case for the monotone scheme.



Visualization of Computational results

example where standard scheme fails

visualization of sample solutions with different regularity.



Singularity in gradient

Solution is surface of ball, with vertical tangent at one point of
domain.

Example (unbounded gradient near the boundary point (1, 1))

u(x) = −
√

2− |x|2, f (x) = 2
(

2− |x|2
)−2

. (4)
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Failure of Newton’s method for natural finite differences

Solution in [0, 1]2

u(x) = −
√

2− |x|2, f (x) = 2
(

2− |x|2
)−2
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(b) Gradient map after two iterations

Figure: The solution oscillates and becomes non-convex.



Mildly singular solution

Example (C 1)

u(x) =
1

2

(
(|x− x0| − 0.2)+

)2
, f (x) =

(
1− 0.2

|x− x0|

)+

. (5)
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Most singular solution

Example (cone, non-differentiable)

u(x) =
√
|x− x0|, f = µ = π δx0 (6)

Approximate measure µ by its average over ball of radius h/2,

f h =

{
4/h2 for |x− x0| ≤ h/2,

0 otherwise.
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Quantitative Computational Results

Summary:

tables of solution times: Newton method is fast. Other
methods: speed may depend on regularity of solution

tables of accuracy: Hybrid scheme is most accurate. On
nonsmooth solutions, monotone scheme is more accurate that
standard scheme, despite lower formal accuracy.



Order of magnitude computation time

Compare: Gauss-Seidel, Semi-Implicit (Poisson), Newton.

Regularity of Solution
Method C 2,α C 1,α (5) and (4) C 0,1 (6)

Gauss-Seidel Moderate Moderate Moderate
(∼ O(M1.8)) (∼ O(M1.9)) (∼ O(M2))

Poisson Fast Fast–Slow Slow
(∼ O(M1.4) (∼ O(M1.4)–blow-up) (∼ O(M2)–blow-up)

Newton Fast Fast Fast
(∼ O(M1.3)) (∼ O(M1.3)) (∼ O(M1.3))

Table: The Newton solver is fastest in terms of absolute and order of
magnitude solution time in each case.



Computation time

C 2 Example
N Newton Its. Newton (sec) Poisson (sec) Gauss-Seidel (sec)
31 3 0.2 0.7 2.2

127 5 2.9 9.6 236.7
361 6 131.4 162.6 —

C 1 Example
N Newton Its. Newton (sec) Poisson (sec) Gauss-Seidel (sec)
31 4 0.4 1.1 0.8

127 11 5.7 256.8 145.5
361 20 200.0 — —

C 0,1 (Lipschitz) Example
N Newton Its. Newton (sec) Poisson (sec) Gauss-Seidel (sec)
31 9 0.5 5.3 0.8

127 32 14.1 1758.2 373.9
361 29 280.2 — —



Accuracy: Max Error

C 2 Example
N Standard Monotone Hybrid
31 7.14× 10−5 89.09× 10−5 24.45× 10−5

361 0.05× 10−5 44.00× 10−5 0.46× 10−5

C 1 Example
N Standard Monotone Hybrid
31 2.6× 10−4 17.5× 10−4 12.2× 10−4

361 — 7.0× 10−4 0.7× 10−4

Example with blow-up
N Standard Monotone Hybrid
31 17.15× 10−3 1.74× 10−3 1.74× 10−3

361 5.41× 10−3 0.33× 10−3 0.04× 10−3

C 0,1 (Lipschitz) Example
N Standard Monotone Hybrid
31 10× 10−3 3× 10−3 3× 10−3

361 — 4× 10−3 4× 10−3

Table: Accuracy for the standard, monotone, and hybrid discretizations
for four representative examples.



Three dimensional Results

C 2 Example
N Max Error Iterations CPU Time (s)

7 0.0151 2 0.04
31 0.0111 5 86.63

C 1 Example
N Max Error Iterations CPU Time (s)

7 0.0034 1 0.02
31 0.0005 1 17.12

Example with Blow-up
N Max Error Iterations CPU Time (s)

7 9.6× 10−3 1 0.03
31 2.9× 10−3 8 138.74

Table: Maximum error and computation time for the hybrid Newton’s
method on three representative examples.



Conclusions

Numerical methods for Monge-Ampère

Even under conditions where solution is regular a naive scheme
will not work, unless the convexity condition is enforced locally

For singular solutions, the equation becomes degenerate, and
iterative solvers can break down

Using a monotone scheme resolves these problems.

For increased accuracy, can use a hybrid scheme in regular
regions of the solution.

Monotonicity discretizations also prevent singularities in the
gradient map, which is useful for applications.



End
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