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Dynamic programming equations of optimal control
and zero-sum games problems
For instance if the Hamiltonian H is convex:

H(x ,p,X ) = sup
α∈A

[
p · f (x , α) +

1
2

tr(σ(x , α)σT (x , α)X ) + r(x , α)

]
and under regularity conditions, v is the viscosity solution of

−∂v
∂t

+H(x ,
∂v
∂x
,
∂2v
∂x2 ) = 0, (x , t) ∈ X×[0,T ), v(x ,T ) = φ(x), x ∈ X ,

if and only if v is the value function of the finite horizon stochastic
control problem:

v(x , t) = supE[
∫ T

t r(x(s),a(s)) ds + φ(x(T )) | x(t) = x ]

dx(s) = f (x(s),a(s)) + σ(x(s),a(s))dW (s), x(s) ∈ X
a strategy, a(s) ∈ A.



Max-plus or tropical algebra

I It is the idempotent semiring Rmax := (R ∪ {−∞},⊕,⊗), where
a⊕ b = max(a,b) and a⊗ b = a + b. The neutral elements are
0 = −∞ and 1 = 0.

I It is the limit of the logarithmic deformation of R+ semiring:

max(a,b) = limε→0+ ε log(ea/ε + eb/ε)

a + b = ε log(ea/εeb/ε)

and the usual order of R is a “natural” order on Rmax, for which all
elements are “positive” or “zero”.

I The complete max-plus algebra Rmax is obtained by completing
Rmax with the +∞ element with the convention +∞+ (−∞) = −∞.

I One can define on Rmax or Rmax notions similar to those of usual
algebra: matrices, scalar product, linear spaces, measures,
integrals, cones,...



Part I: Max-plus discretizations

First order HJ equations, or dynamic programming equations of
undiscounted deterministic optimal control problems are max-plus
linear, that is the Lax-Oleinik semigroup St : φ 7→ v(·,T − t) is max-plus
linear (Maslov, 87):

St (sup(λ1 + φ1, λ2 + φ2)) = sup(λ1 + St (φ1), λ2 + St (φ2)) ,

where λ+ φ : x 7→ λ+ φ(x).

Recall that the set of all functions X → Rmax or Rmax is a max-plus
semimodule (that is a linear space over Rmax), where

I the addition is the pointwise maximum, which is equivalent to the
supremum,

I the multiplication by a scalar is the pointwise addition λ · φ = λ+ φ.



Max-plus analogue of linear PDEs

Usual algebra Max-plus algebra

Parabolic PDE: −∂v
∂t + Lv = 0 Evolution HJ PDE: −∂v

∂t + H(x , ∂v
∂x ) = 0

Heat equation Lv := ∆v LQ problem: H(x ,p) := p2

2

Elliptic PDE: Lv = 0 Stationnary HJ: H(x , ∂v
∂x ) = 0

Eigenproblem: Lv = λv Ergodic HJ: −λ+ H(x , ∂v
∂x ) = 0

with

Lv =
1
2

n∑
i,j=1

aij (x)
∂2v
∂xi∂xj

+
n∑

i=1

gi (x)
∂v
∂xi
− δ(x)v + c(x).



Max-plus analogue of discretization schemes
Usual algebra Max-plus algebra
Probabilist point of view: Discretize the max-plus Brownian
Discretize the Brownian process process (A., Quadrat, Viot, 98).
Variational point of view:
Weak solution of Generalized solution of HJ
−1

2∆v = f on Ω, v = 0 on ∂Ω (Kolokoltzov and Maslov, 88):

v ∈ V, 1
2

∫
∇v∇φ =

∫
fφ ∀φ ∈ V, v t ∈ W, 〈v t+δ, φ〉 = 〈Sδv t , φ〉 ∀φ ∈ Z,

where V = H1
0 (Ω). W, Z are subsemimodules of RX

max.

FEM: replace V by finite Max-plus FEM: replaceW and Z by
dimensional subspaces finitely generated subsemimodules

(A. Gaubert, Lakhoua, SICON 08).
Replace Sδ by a finite dimensional
max-plus linear operator
(Fleming and McEneaney, 00).

Finite difference point of view:
Error: use linearity and regularity, impossible
or monotonicity possible.



The max-plus finite element method

I The max-plus scalar product is given by:

〈u, v〉 = sup
x∈X

u(x) + v(x) .

I We fix the max-plus semimodulesW and Z for solutions and test
functions, together with some approximation of them by finitely
genererated subsemimodulesWh and Zh (here and in the sequel h
refers to discretized objects):

Wh = span{w1, . . . ,wp} finite elements
Zh = span{z1, . . . , zq} test functions



Examples of semimodule and their discretizations:
I W is the space of l.s.c. convex functions and wi : x 7→ θi · x ,
θi ∈ Rn.

θ1

θ2

θ3

I W is the space of l.s.c. c-semiconvex functions and
wi : x 7→ − c

2‖x − x̂i‖2, xi ∈ Rn.
I W is the space of 1-Lip functions and wi : x 7→ −‖x − x̂i‖, xi ∈ Rn.

x̂1 x̂2 x̂3



The max-plus FEM (continued)

I The approximation v t
h of the generalized solution v t of HJ equation

must satisfy

v t
h ∈ Wh, 〈v t+δ

h , φ〉 = 〈Sδv t
h, φ〉 ∀φ ∈ Zh, t = δ, 2δ, . . . ,

I This is equivalent to
v t

h = sup
1≤j≤p

λt
j + wj

and

sup
1≤j≤p

(λt+δ
j + 〈wj , zi〉) = sup

1≤j≤p
(λt

j + 〈Sδwj , zi〉) ∀1 ≤ i ≤ q .

I This equation is of the form Mλt+δ = Kλt , where M and K are
analogues of the mass and stiffness matrices, respectively.



I To compute λt+δ as a function of λt , one need to solve a max-plus
linear system of the form Mµ = ν, which may not have a solution.

I But it has always a greatest subsolution (Mµ ≤ ν), M]ν, where M]

is a the adjoint of M, it is a min-plus linear operator:

(M]ν)j = min
1≤i≤q

−Mij + νi .

I So we take for max-plus FEM iteration:

λt+δ = M]Kλt .



Summary of max-plus FEM:

I Approach v t by v t
h := sup1≤j≤p λ

t
j + wj where the λ0

j are given, and

λt+δ
j = min

1≤i≤q

(
−〈wj , zi〉+ max

1≤k≤p

(
〈Sδwk , zi〉+ λt

k

))
, t = δ, 2δ, . . . , 1 ≤ j ≤ p

I This is a zero-sum two player (deterministic) game dynamic
programming equation !

I The states and actions are in [p] : {1, . . . ,p} and [q], Min plays in
states j ∈ [p], choose a state i ∈ [q] and receive Mij from Max, Max
plays in states i ∈ [q], chooses a state k ∈ [p] and receive Kik from
Min. λNδ

j is the value of the game after N turns (Min + Max) starting
in state j .



A geometric rewritting of the max-plus FEM :

I The FEM iterations can also be written as:

v t+δ
h = Πh◦Sδ(v t

h) and v0
h = PWhv0

where
Πh = PWh◦P

−Zh

PWhv = max{w ∈ Wh | w ≤ v}

P−Zhv = min{w ∈ −Zh | w ≥ v} .

I These max-plus projectors were studied by Cohen, Gaubert,
Quadrat, they are nonexpansive in the sup-norm.



Example of projector Πh = PWh◦P
−Zh

We choose P2 finite elements and P1 test functions
x̂1 x̂2 x̂3

ŷ1 ŷ2 ŷ3



Example of projector Πh = PWh◦P
−Zh

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5

v



Example of projector Πh = PWh◦P
−Zh

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5

v

P−Zh(v)



Example of projector Πh = PWh◦P
−Zh

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5

v

P−Zh(v)

x̂3 x̂4 x̂5x̂2x̂1 x̂6



Example of projector Πh = PWh◦P
−Zh

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5

v

x̂3 x̂4x̂2x̂1 x̂6x̂5

Πh(v)

P−Zh(v)



I As in the usual FEM, the error can be estimated from projection
errors:

‖vT
h − vT‖∞ ≤ (1 + T

δ ) Projection error
Projection error = supt=0,δ,...,T ‖PWh◦P

−Zhv t − v t‖∞
≤ supt=0,δ,...,T (‖P−Zhv t − v t‖∞ + ‖PWhv t − v t‖∞).

I By convexity techniques, we obtain

Projection error ≤ C(∆x)k/δ

with k = 1 or 2 depending on the “degree” of the finite elements
and on the regularity of the solution v t , and ∆x equal to the
“diameter” of the space discretization (Voronoi cells or Delaunay
triangulation).

I The max-plus approximation theory seems limited to k = 2 ?



However, this was an ideal FEM method. One need to compute:

Mij = 〈wj , zi〉 = supx∈X wj(x) + zi(x)

Kik = 〈zi ,Sδwk 〉 = supx∈X ,u(·) zi(x) +
∫ δ

0 `(x(s),u(s)) ds + wk (x)

I For good choices of wj and zi , Mij can be computed analytically.
I Computing Kik is a usual optimal control problem, but horizon δ

may be small, and the final and terminal rewards wj and zi may be
chosen to be nice, so that Kik may be well approximated.

I Then

‖vT
h − vT‖∞ ≤ (1 +

T
δ

)(Projection error + Approximation error)

I For instance, using r -order one-step approximations of Sδwi(x),
Approximation error= O(δr+1).

I So the total max-plus FEM error is in the order of

(∆x)k/δ + δr ,

with r ≥ 1, and k = 1 or 2.



Remarks

I These error estimates are similar to those of some semi-lagrangian
schemes.

I They need some regularity of l and f and do not work for Dirichlet
limit conditions, or variational inequalities (stopping time problems).

I Hence it is not clear that they are less diffusive than usual finite
difference methods.

I δ need to be small and ∆x ' δ
r+1

k .
I The matrices are full, then the complexity (O(ε−(1+2n)) when k = 2

and r = 1) is too large to be able to handle problems with
dimension > 2.

I It is comparable with the complexity of the finite difference method,
if we consider the usual estimation of this method that is in O(δ1/2).



Perspectives
I Take higher order methods to approximate K or Sδwi , for instance

a direct or Pontryagin method with step ∆t << δ and order r .
I Then the error is in the order of

(∆t)r + (∆x)k/δ ,

as soon as δ is small enough (but of order 1) to ensure that
convexity propagate and that the global optimum of the control
problem related to the computation of Kij is accessible by
Pontryagin method.

I The complexity would then be in O(ε−(1+n)) when r = 1 and k = 2,
thus comparable to that of the finite difference method, if the error
of this method were in O(∆t).

I But it should be able to handle less regular value functions, and
also less regular lagrangians and drifts, so Dirichlet boundary
conditions or variational inequalities.

I It has some similarity with the point of view of McEneaney
combining Riccati solutions with max-plus linearity.

I However, the problem of Curse of dimensionality is still there.



Part II: Tropical convex sets

C ⊂ Rn
max is a tropical convex set if

f ,g ∈ C =⇒ [f ,g] := {(λ+ f ) ∨ (µ+ g) | λ, µ ∈ Rmax, λ ∨ µ = 0} ∈ C

Tropical convex cones⇔ subsemimodules over Rmax.



Theorem
Every closed tropical convex cone of Rn

max is the intersection of tropical
half-spaces, which means:

C = {u ∈ Rn
max | Au ≤ Bu}

with A,B ∈ RI×[n]
max , and I possibly infinite.

This comes from the max-plus separation theorem, see for instance
Zimmermann 77, Cohen, Gaubert, Quadrat 01 and LAA04.

Tropical polyhedral cones are the intersection of finitely many tropical
half-spaces (I = [m]), or equivalently, the convex hull of finitely many
rays.
See the works of Gaubert, Katz, Butkovič, Sergeev, Schneider,
Allamigeon,....
See also the tropical geometry point of view Sturmfels, Develin, Joswig,
Yu,....



Recall: Au ≤ Bu ⇔ u ≤ f (u) with f (u) = A]Bu,

(f (u))j = inf
i∈I

(−Aij + max
k∈[n]

(Bik + uk )) .

f is a min-max function (Olsder 91) when I is finite. In that case,
f : Rn → Rn when the columns of A and the rows of B are not ≡ −∞.



But the following are equivalent for f : Rn → Rn:

1. f can be written as f (u) = A]Bu with A,B ∈ RI×[n]
max ;

2. f is the dynamic programming operator of a zero-sum two player
deterministic game:

[f (u)]j = inf
i∈I

max
k∈[n]

(rjik + uk )

3. f is order preserving (u ≤ y ⇒ f (u) ≤ f (y)) and additively
homogeneous (f (λ+ u) = λ+ f (u)).

4. f is the dynamic programming operator of a zero-sum two player
stochastic game:

[f (u)]j = inf
α∈A

sup
β∈B

(rα,βj +
∑
k∈[n]

(Pα,β
jk uk ))

Then C := {u ∈ (R ∪ {−∞})n | u ≤ f (u)} is a tropical convex cone.
See Kolokoltsov; Gunawardena, Sparrow; Rubinov, Singer for 3⇒ 2 or
4, take I = Rn and rjyk = f (y)j − yk .



Proposition ((A., Gaubert, Guterman 09), uses (Nussbaum, LAA 86))

Let f be a continuous, order preserving and additively homogeneous
self-map of (R ∪ {−∞})n, then the following limit exists and is
independent of the choice of u:

χ̄(f ) := lim
N→∞

max
j∈[n]

f N
j (u)/N ,

and equals the following numbers:

ρ(f ) := max{λ ∈ Rmax | ∃u ∈ Rn
max \ {−∞}, f (u) = λ+ u} ,

cw(f ) := inf{µ ∈ R | ∃w ∈ Rn, f (w) ≤ µ+ w} ,
cw′(f ) := sup{λ ∈ Rmax | ∃u ∈ Rn

max \ {−∞}, f (u) ≥ λ+ u} .

Moreover, there is at least one coordinate j ∈ [n] such that
χj(f ) := limN→∞ f N

j (u)/N exists and is equal to χ̄(f ).
χj(f ) is the mean payoff of the game starting in state j .
See also Vincent 97, Gunawardena, Keane 95, Gaubert, Gunawardena
04.



Theorem
Let

C = {u ∈ Rn
max | Au ≤ Bu}

∃u ∈ C \ {−∞} iff Max has at least one winning position in the mean
payoff game with dynamic programming operator f (u) = A]Bu, i.e.,
∃j ∈ [n], χj(f ) ≥ 0.



A =

 2 −∞
8 −∞
−∞ 0

 B =

 1 −∞
−3 −12
−9 5



2

1

8
−3

−12

0

53

2

1

1

2

−9

players receive the weight of the arc



2 + u1 ≤ 1 + u1
8 + u1 ≤ max(−3 + u1,−12 + u2)

u2 ≤ max(−9 + u1,5 + u2)

2

1

8
−3

−12

0

53

2

1

1

2

−9



2 + u1 ≤ 1 + u1
8 + u1 ≤ max(−3 + u1,−12 + u2)

u2 ≤ max(−9 + u1,5 + u2)

2

1

8
−3

−12

0

53

2

1

1

2

−9

χ(f ) = (−1,5),u = (−∞,0) solution



Theorem ((A., Gaubert, Guterman 09))

Whether an (affine) tropical polyhedron

{u ∈ Rn
max | max(max

j∈[n]
(Aij + uj), ci) ≤ max(max

j∈[n]
(Bij + uj),di), i ∈ [m]}

is non-empty reduces to whether a specific state of a mean payoff
game is winning.
The proof relies on Kohlberg’s theorem (80) on the existence of
invariant half-lines f (u + tη) = u + (t + 1)η for t large.



Corollary
Each of the following problems:

1. Is an (affine) tropical polyhedron empty?
2. Is a prescribed initial state in a mean payoff game winning?

can be transformed in linear time to the other one.

I Hence, algorithms (value iteration, policy iteration) and complexity
results for mean-payoff games can be used in tropical convexity.

I Conversely one can compute χ(f ) by dichotomy solving emptyness
problems for convex polyhedra, so tropical linear programs.

I Can we find new algorithms for mean payoff games using this
correspondance?

I Can we find polynomial algorithms for all these problems?



Part III: Policy iterations for stationnary zero-sum
games

Consider the stationnary Isaacs equation:

−ρ+ H(x ,
∂v
∂x
,
∂2v
∂x2 ) = 0, x ∈ X

where we look for the mean payoff ρ and the bias function v .
Using a monotone discretization, one obtains the additive spectral
problem:

ρ+ u = f (u), u ∈ RN ,

where f is the dynamic programming operator of a zero-sum two player
undiscounted stochastic game.

We want to construct a fast algorithm that works even when the Markov
matrices associated to fixed strategies may not be irreducible and for a
large N =⇒ policy iterations with algebraic multigrid methods.



Policy iterations for optimal control problems
I For a discounted infinite horizon problem, one need to solve:

u = f (u), where [f (u)]j = sup
α∈A

f (u; j , α) := rαj +
∑

k∈[N]

(Pα
jkuk ) .

Here, for each strategy ᾱ : [N]→ A, the matrix (Pᾱ(j)
ij )jk is strictly

submarkovian.
I The policy iteration (Howard 60): starts with ᾱ0, and iterates:

I vn+1 is the value with fixed strategy ᾱn:

vn+1
j = f (vn+1; j , ᾱn(j)), j ∈ [N] .

I find ᾱn+1 optimal for vn+1:

ᾱn+1(j) ∈ Argmaxα∈A f (vn+1; j , α) .

I It generalizes Newton algorithm
I vn is nonincreasing.
I If A is finite, it converges in finite time to the solution.



Policy iterations for games

Now
[f (u)]j = sup

α∈A
f (u; j , α) := inf

β∈B
(rα,βj +

∑
k∈[n]

(Pα,β
jk uk )) .

and u → f (u; j , α) is non linear.
I Assume the non linear system

v = f ᾱ(v), with f ᾱ(v)j := f (v ; j , ᾱ(j)), j ∈ [N]

has a unique solution for any strategy ᾱ of Max, then solving it with
Policy Iteration, one obtains the policy iteration of (Hoffman and
Karp 66, indeed introduced in the ergodic case).

I Assume they have a possibly non unique solution, then the nested
and the global policy iterations may cycle. To avoid this, one need
to use a method similar to that of (Denardo& Fox 68) in the
one-player ergodic case.



Accurate policy iterations for games
In the previous case:

I It suffices to fix the values of ᾱn(j) as much as possible (that is
when they are already optimal)

I and to choose for vn+1 the nondecreasing limit:

vn+1 = lim
k→∞

(f ᾱn )k (vn) .

I This limit is the unique solution of the restricted system:

vj = (vn)j , j ∈ C, vj = (f ᾱn (v))j , j 6∈ C

where C is the set of critical nodes of the concave map f ᾱn defined
as in (Akian, Gaubert 2003). This system can be solved again by a
policy iteration for one-player.

I When the game is deterministic, f ᾱn is min-plus linear, and the set
of critical nodes is the usual one defined in max-plus spectral
theory. It is the analogue of the Aubry or Mather sets. See in that
case (Cochet, Gaubert, Gunawardena 99).

I See (Cochet-Terrasson, Gaubert 2006) for general mean-payoff
games.



Numerical results of Policy iteration for mean-payoff
stochastic games with algebraic multigrid methods (A.,

Detournay)

Solve the stationnary Isaacs equation:

−ρ+ ε∆v + max
α∈A

(α · ∇v) + min
β∈B

(β · ∇v) + ‖x‖22 = 0 on (−1/2,1/2)2

with Neuman boundary conditions.
Take

A := B∞(0,1)

and
B := {(0,0), (±1,±2), (±2,±1)}

or
B := {(0,0), (1,2), (2,1)} .



Case B := {(0,0), (±1,±2), (±2,±1)}
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Case B := {(0,0), (1,2), (2,1)}
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Variational inequalities problem (VI)

Optimal stopping time for first player{
max

[
∆v − 0.5 ‖∇v‖22 + f , φ− v

]
= 0 in Ω

v = φ on ∂Ω

Max chooses between play
or stop (]A = 2) and receives
φ when he stops
Min leads to ‖∇v‖22

with solution on Ω = [0,1]× [0,1] given
by
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 0.6
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VI with 129× 129 points grid

iterations = 100



VI with 129× 129 points grid

iterations = 200



VI with 129× 129 points grid

iterations = 300



VI with 129× 129 points grid

iterations = 400



VI with 129× 129 points grid

iterations = 500



VI with 129× 129 points grid

iterations = 600



VI with 129× 129 points grid

iteration 700!
in ≈ 8148 seconds
slow convergence

Policy iterations bounded by
]{possible policies}
→ can be exponential in N

like Newton→ improve with good initial guess? → FMG



Full Multilevel AMGπ

define the problem on each coarse grid ΩH

Interpolation of strategies and value

AMG Policy Iterations

interpolation of value v and strategies α, β
stopping criterion for AMGπ ‖r‖L2 < cH2 (with c = 0.1)



Full multilevel AMGπ

Ω = [0,1]× [0,1], 1025 nodes in each direction
ΩH coarse grids (number of nodes in each direction)
n =current iteration from Max, k = number of iterations from Min

ΩH n k ‖r‖∞ ‖r‖L2
‖e‖∞ ‖e‖L2

cpu time s
3 1 1 2.17e − 1 2.17e − 1 1.53e − 1 1.53e − 1 << 1
3 2 1 1.14e − 2 1.14e − 2 3.30e − 2 3.30e − 2 << 1
5 1 2 2.17e − 4 8.26e − 5 3.02e − 2 1.71e − 2 << 1
9 1 2 4.99e − 3 1.06e − 3 1.65e − 2 7.99e − 3 << 1
9 2 1 2.68e − 3 5.41e − 4 1.66e − 2 8.15e − 3 << 1
9 3 1 2.72e − 4 5.49e − 5 1.68e − 2 8.30e − 3 << 1

513 1 1 2.57e − 7 4.04e − 9 3.15e − 4 1.33e − 4 2.62
1025 1 1 1.31e − 7 1.90e − 9 1.57e − 4 6.63e − 5 1.17e + 1
1025 2 1 6.77e − 8 5.83e − 10 1.57e − 4 6.62e − 5 2.11e + 1



Again max-plus algebra:

I Full multilevel scheme can make policy iteration faster and efficient!
I Can we generalize it for stochastic games with finite state space?
I Mean of game operators leads to an exponential number of actions

at lower levels, so need to reduce the number of elements in a
max-plus linear combination, this is a max-plus projection.

I Recall: policy iteration for games is exponential (O. Friedmann 09),
and finding a polynomial time algorithm for zero-sum game is an
open problem.


