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Control of Medium Excitability

High intensity — Low excitability
Low intensity — High excitability
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Wave Propagation in Subexcitable Media

15 mm CLICK PICTURE TO PLAY MOVIE

5 mm

At low excitability

waves with free ends

contract tangentially.

Medium does not ’
support sustained

wave propagation;
hence, subexcitable.

Superimposed 1images at equal time intervals

J. Maselko, KS, Nature 391, 770-772 (1998).




Feedback Stabilized Waves
dp(X,y)=a-A+b

L Y. A = area
a = gain
b = offset
Excitability 1s
determined by
- -

offset:

b= -0.0744 (a)
-0.0248 (b)
0.0248 (c)
0.0744 (d)
mW/cm?

E. Mihaliuk, T. Sakurai, F. Chirila, KS, Phys. Rev. E 65, 065602 (2002).
V.S. Zykov, KS, Phys. Rev. Lett. 94, 068302 (2005).



Saddle Character of Unstable Waves
Perturbation: A® =+ 1.0 x 103, At=0.1
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Wave Size Dependence on Medium Excitability
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Gain: a = 2.5x10%
Offset: b =- 0.1 (small wave)
- 0.2 (medium wave)

- 0.3 (large wave)

Stabilized wave size increases with

decreasing excitability.



Excitability Boundary for Spiral Waves
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Spreading Depolarization (SD) Wave Segments
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Subexcitable regime in the SD wave segment in chicken retina
FitzHugh—Nagumo equations

M.A. Dahlem et al. Physica D 239, 889-903 (2010).



Spreading Depolarization (SD) Wave Segments

II] lll] 2Iﬂ 3Iﬂ 4ICI EICI
Propagating visual migraine aura (left) and (presumed) corresponding
spreading depression wave segments (right) according to reversed

retinotopic mapping onto a flat model of the primary visual cortex.

M.A. Dahlem and N. Hadjikhani, PLoS One 4(4), E5007 (2009).



Directing Stabilized Waves with Excitability Gradients

d(x,y)=a-A+b+c-G(x,Y)
A= O(p(X,Y)— Py)

[
Computer o
&
Ha X minor %
Video [ N
Frojector | 460 m

bandpass filter

Chat




Wave trajectories for radially
symmetrical excitability
distribution:

G(r) = In(r) - In(r.,)
Superposition of snapshots of

experimental (A) and simulated
(B) wave behavior.

Scale bar in (A): 2.0 mm.




CLICK PICTURE TO PLAY MOVIE

Hypotrochoid trajectories

X =(a—p)cos(0) + ycos((5—1)(0))
Y =(a-p)sin(0) —ysin((F—1)(0))

(\

Circular trajectories:
a=7 =0, =100
Three-lobed trajectories:
o =60, =20,y =80
Four-lobed trajectories:
o =60,B =15,y =80

T. Sakurai, E. Mihaliuk, F. Chirila, KS, Science 296, 2009 (2002).




Waves Undergoing Random Walks

The slope of G randomly selected from a uniform probability
distribution between -0.002 and 0.002.  CLICK PICTURE TO PLAY MOVIE

Three different random
walk trajectories, all
starting at the same point,
shown in red, blue and





Experimental Waves Undergoing Random Walks

Three different random
walk trajectories, each
starting at the same point.

Slope of G randomly
selected from a uniform
probability distribution
between -2.5 and 2.5.

Scale bar: 2.0 mm.




Reflection and Refraction of Wave Segments
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Chemical wave “Snell-like” Law: =0.669A¢
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Wave Segment Confined in a Square Box
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Light intensity outside box ten times larger than inside.




Reflection of Wave Segments: Experiments

Linear gradient
reflection boundary.

More effective than
step function.

Also used parabolic
and cubic functions.




Stabilizing and Controlling 3D Waves
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d(t)=a+b(V(t)-V,)
V()= D O(p(X,Y,2)~ py)
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Wave Trajectories in 3D

XY plane

XZ plane






Navigating Excitability Landscapes
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Navigating Excitability Landscapes

100
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200 r
250 r
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Wave stabilization by

global feedback. Hence,
wave direction is determined
by the local excitability
gradient.



Navigating Excitability Landscapes:
Experiments!
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Maxima and Minima
above and below average
excitability.
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Navigating Excitability Landscapes

Parabolic valley
excitability potential

Simulations (top) and
experiments (bottom).

U (r) = asim,exp y2
ag, =1.1x107"
.y = 0.29

Chaos 18, 026108-1-8 (2008).
Eur. Phys. J. ST 165, 161-167 (2008).




Navigating Excitability Landscapes

Radial Lennard-Jones

Simulations (left) and
experiments (right).

a,, =1.13 a,, =0.11

by, =0.15 b, =8.4x107
C,. =5 C.,, =108

Radial harmonic potential

Simulations (left) and

experiments (right).
U (r) - asim,exprz

ag, =1.1x107
a,, =029




Wave-Wave Interactions via Potentials

Waves experience attractive and repulsive forces according to a Lennard-Jones
type potential. Light intensity in control grid is determined by the distance between
the centers of mass, and the light distribution is the gradient of the potential applied
perpendicular to the velocity:

a 1

g=c -

M—Qf -

Light intensity gradient = Vperp ® Vo

where ry, I, = the centers of mass of waves
1,2

% 140 190 0| @ determines the minimum in the potential
c gives the strength of the interaction:

C < 50: noncohesive behavior

50 < ¢ <150: processional behavior

150 < ¢ < 350: rotational & processional
behavior



Repulsive Part of Potential

Waves experience repulsive forces:
Separation of center of masses = 80.

Equilibrium distance, 1. = 100.

Attractive Part of Potential

Waves experience attractive forces:
Separation of center of masses = 140.

Equilibrium distance, 1., = 100.




Rotational Behavior

Pairwise Interactions

Area=3.1cm X 3.1 cm
(160 pixels x 160 pixels)

Controller box — 32 pixels by 32
pixels

Parameter a 1s chosen such that
minimum in potential is at 50
pixels.

Rotational behavior 1s observed
for high c values (¢ > 7000
mW/cm? ).
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Rotational Behavior

Pairwise Interactions

Area=3.1cm X 3.1 cm
(160 pixels x 160 pixels)

Controller box — 32 pixels by 32
pixels

Parameter a is chosen such that
minimum in potential is at 50
pixels.

Rotational behavior is observed
for high c values (c > 7000
mW/cm?).




Processional Behavior

Pairwise Interaction

Area=3.1cm x 3.1 cm
(160 pixels x 160 pixels)

Controller box — 32 pixels by 32
pixels

Parameter a 1s chosen such that
minimum in potential is at 50
pixels.

Processional behavior is
observed for medium c values

(35 <¢c <7000 mW/cm?).
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Processional Behavior

Pairwise Interaction

Area=3.1cm x 3.1 cm
(160 pixels x 160 pixels)

Controller box — 32 pixels by 32
pixels

Parameter a is chosen such that
minimum in potential is at 50
pixels.

Processional behavior is

observed for medium ¢ values
(35 <c <7000 mW/cm?).




Non-cohesive

Wandering

Parallel

Rigid Rotation

Loose Rotation







Two- and Four-Wave Rotation: All-to-All Interactions
CLICK PICTURE TO PLAY MOVIE

Unstable, spiraling out. Stable orbit.












Five- and Eight-Wave Rotation: All-to-All Interactions

CLICK PICTURE TO PLAY MOVIE

Three-wave center Two-wave center
with two outer waves. with six outer waves.






Behavior as a Function of

Interaction Strength C
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Four wave system.
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;‘f Rotational system at high value
of ¢, which 1s decreased. At low
values, system become
processional, and stays that way
as C is increased.
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Blue solid line: value of P,
giving the processional character

R = ZN: (rn -r,, )x V. P i V. (average velocity).
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Paths of Minimum Potential
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Stable steady state
configurations for processional
three-wave system.

LJ equilibrium distance is 100.

Wave A experiences equal and

opposite gradients from B and
C.



Paths of Minimum Potential: Examples

(a) (b)

Interacting waves in multiple-wave rotations track paths defined by minimum potential.
(a) The trajectory of one wave in 3 wave rotation following minimum potential path.

(b) Two wave trajectories and the associated minimum potential paths in six-wave
system (five waves orbiting around one wave).



Fifty-Wave System
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Collective Behavior in Excitable Media: Interacting Particle-Like Waves

Feedback stabilization of waves
Navigating excitability landscapes
Interacting waves via LJ potential
Processional and rotational behavior
Paths of minimum potential

http://heracles.chem.wvu.edu
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