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Morphogenesis in development.
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The Gierer-Meinhardt system with saturation.

This is a reaction diffusion system of the activator-inhibitor type.

Its steady states satisfy

ǫ2∆u− u+
up

(1 + κup)vq
= 0; d∆v − v +

ur

vs
= 0

on a domain D with the Neumann boundary condition

∂u

∂ν

∣

∣

∣

∂D
= 0;

∂v

∂ν

∣

∣

∣

∂D
= 0.

κ = 0: non-saturation case. κ > 0: saturation case.

There is a large body of literature on the non-saturation GM

system. The saturation case (GMS) is not as well studied.

One interface radial solution of GMS: del Pino (1994), Sakamoto

and Suzuki (2004).
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Reduction to a nonlocal geometric problem.

f(u, v) = −u+
up

(1 + κup)vq
. (1)

As a function of u, f(u, v) is bistable with three zeros.

∃v0 such that f(·, v0) is balanced, i.e.
∫ z

0
f(u, v0) du = 0, where z is

the largest zero of f(·, v0).

When ǫ is small and d is large in the sense d = d0

ǫ , a subset E of D

emerges so that solutions (u(x), v(x)) of GMS satisfy

(u(x), v(x)) → (zχE(x), v0) as ǫ → 0.

On ∂E the equation

H(∂E) + γ(−∆)−1(χE − a) = λ (2)

holds, and |E| = a|D|. Here a ∈ (0, 1) and γ > 0 are derived from

the parameters of GMS.
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Morphological phases in diblock copolymers.

S, C, L phases appear as the monomer composition parameter a

increases from 0 to 1/2. They repeat as a moves from 1/2 to 1 with

the colors reversed.
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Diblock copolymers.

Soft materials, fluid-like disorder on the molecular scale, a high

degree of order at longer length scales. a = NA

NA+NB
.
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The Ohta-Kawasaki theory (1986).

The free energy of a diblock copolymer melt (formulated by

Nishiura and Ohnishi 1995):

ID,ǫ(u) =

∫

D

[
ǫ2

2
|∇u|2 +W (u) +

ǫγ

2
|(−∆)−1/2(u− a)|2]

u ∈ W 1,2(D), u :=
1

|D|

∫

D

u = a

u, 1− u: The relative densities of the A and B monomers.

0 and 1: Two pure monomer states.

W : A balanced double-well function with global minimum value 0

at 0 and 1, e.g. W (u) = (1/4)u2(1− u)2.

(−∆)−1/2: −∆ has the Neumann boundary condition.

ǫ: A small parameter ∼ thickness of interfaces.

γ: A parameter ∼ the size of the sample.
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The Γ-limit.

The Γ-convergence theory (De Giorgi 1975, Modica and Mortola

1977, Modica 1987, and Kohn and Sternberg 1989) is readily

applicable. The Γ-limit of ǫ−1ID,ǫ is JD given before.

JD(E) = τPD(E) +
γ

2

∫

D

|(−∆)−1/2(χE − a)|2 dx

χE ∈ BV (D), |E| = a|D|

Note that u now is replaced by χE . τ =
∫ 1

0

√

2W (s) ds. In this talk

we take τ = 1
n−1

.

Euler-Lagrange equation:

H(∂E) + γ(−∆)−1(χE − a) = λ.
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Recapitulation.

A physical/biological system occupies a bounded domain D in R
n.

Given two parameters: a ∈ (0, 1) and γ > 0, find a subset E of D

and a constant λ such that |E| = a|D|, and on ∂E ∩D the equation

H(∂E) + γ(−∆)−1(χE − a) = λ

holds. If ∂E meets ∂D, then the two meet orthogonally.

The problem has a variational structure:

JD(E) =
1

n− 1
PD(E) +

γ

2

∫

D

|(−∆)−1/2(χE − a)|2 dx

where PD(E) is the perimeter of E in D, i.e. the size of ∂E ∩D.

References. One dimensional case: R. and Wei 2000; Fife and

Hilhorst 2001. Global minimizers in higher dimensions: Alberti,

Choksi, and Otto 2009; Muratov; Sternberg and Topaloglu 2011.
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Self-organization.

A cross section of a diblock copolymer in the cylindrical phase

(TEM micrograph taken by Lewis).

Is there an E ⊂ D ⊂ R
2 which is a union of small discs arranged in

a hexagonal pattern and solves H(∂E) + γ(−∆)−1(χE − a) = λ?
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Theorem (R. and Wei 2007). Let D ⊂ R
2. Suppose that K ≥ 2 is

an integer, and define ρ by Kπρ2 = a|D|.

1. For every ǫ > 0 there exists δ > 0, depending on ǫ, K and D

only, such that if ρ < δ, and γ ∈
(

1+ǫ
ρ3 log 1

ρ

, 12−ǫ
ρ3

)

, then there

exists a stable solution with K discs.

2. Each disc is approximately round with the same radius ρ.

3. Let the centers of these discs be ζ1, ζ2, ..., ζK . Then

(ζ1, ζ2, ..., ζK) is close to a global minimum of a function F :

F (ξ1, ξ2, ..., ξK) =

K
∑

k=1

R(ξk, ξk) +

K
∑

k=1

K
∑

l=1,l 6=k

G(ξk, ξl)

where G is the Green’s function of −∆ on D, and R is the

regular part of G.
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Numerical calculations. Let D be a unit disc. Then G and R

are known explicitly.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The TEM micrograph by Lewis on the left; a numerical

minimization of F with K = 100 on the right.

A profile problem is needed to isolate each component (an ansatz)

from the pattern. Only self-interaction is considered.
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A profile problem of mean curvature and Newtonian

potential.

Let m > 0 and γ > 0. Find a set E in R
n and a number λ such

that |E| = m and

H(∂E) + γN (E) = λ

holds on ∂E. H(∂E) is the mean curvature of ∂E.

N (E)(x) =







∫

E
1
2π log 1

|x−y| dy if n = 2
∫

E
1

4π|x−y| dy if n = 3

is the Newtonian potential of E. Variational structure:

J (E) =
1

n− 1
P(E) +

γ

2

∫

E

N (E)(x) dx, |E| = m.

P(E) is the perimeter of E, i.e. the size of ∂E.

The two parameters m and γ can be reduced to one. Take m = 1

(or any other convenient number).
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Definition. An ansatz is a solution of the curvature-potential

equation, used as a building block for periodic patterns.

The disc ansatz. For any γ > 0 the disc {x ∈ R
2 : |x| < 1} is a

solution of the curvature-potential equation H(∂E) + γN (E) = λ.

The disc is stable if γ ∈ (0, 12) and unstable if γ > 12.

Application. The disc ansatz is used for the construction of the

stable multi-disc solution to H(∂E) + γ(−∆)−1(χE − a) = λ on a

bounded domain D ⊂ R
2 (R. and Wei 2007).

1. Make K copies of the ansatz, and scale them down so their

radii ∼ ρ.

2. Add a small perturbation to each small disc.

3. Place the perturbed small discs properly in D.
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Ansatze in R
2:

1. Disc ansatz, 2. Oval ansatz, 3. Ring ansatz.

Ansatze in R
3:

1. Ball ansatz, 2. Shell ansatz, 3. Toroidal ansatz.
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Ring droplets.

Ring droplets on freshwater ray; the ring ansatz.

Theorem (Kang and R. 2009). There exists γ0 > 0 such that if

γ > γ0, the curvature-potential equation H(∂E) + γN (E) = λ

admits a ring shaped ansatz E = {x ∈ R
2 : R1 < |x| < R2} and

|E| = π. The solution is stable if γ > γ1 and unstable if γ ∈ (γ0, γ1).
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Ring droplet solutions and mixed droplet solutions.
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On a bounded domain the geometric problem has ring droplet

solutions and solutions of co-existing rings and discs if a small and

γ is sufficiently large (Kang and R. 2010).

In the first picture, all the rings have approximately the same size

and their locations are determined by a minimum of the same F for

the disc droplet solutions. In the second picture, the rings and the

discs have approximately the same area.
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The toroidal tube ansatz.

Toroidal objects are fascinating.

Known as the vortex ring in fluid dynamics, it is a region of

rotating fluid where the flow pattern takes on a toroidal shape.

In a quntuam fluid, a vortex ring is formed by a loop of poloidal

quantized flow pattern. It was detected in superfluid helium by

Rayfield and Reif, and more recently in Bose-Einstein condensates

by Anderson, et al.

In 2004 Pochan, et al, found a toroidal morphological phase in a

triblock copolymer.
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An illustration of a toroidal supramolecule assembly.
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Theorem (R. and Wei 2011). When γ is sufficiently large, the

curvature-potential equation H(∂E) + γN (E) = λ has an

approximately torus shaped, tube like solution in R
3 of volume 1.
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Define a function f = f(γ) via its inverse

γ =
2

f3 log 1
2π2f3

, lim
γ→∞

f(γ) = 0.

Let p and q be the two radii of the torus (p > q). Then 2π2pq2 = 1

and

lim
γ→∞

q

f(γ)
= 1 and lim

γ→∞
2π2f2(γ)p = 1

A cross section of this ansatz is only approximately a round disc.

The ansatz is not a perfect torus.
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Double tori.

Theorem (R. and Wei). The curvature-potential equation has a

disconnected solution of two approximate tori of combined volume

2 in R
3, if γ is sufficiently large.
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Let p1 and q1 be the larger and the smaller radii of the inner torus

and p2 and q2 be the two radii of the outer torus. Then

lim
γ→∞

qj
f(γ)

= 1 and lim
γ→∞

2π2f2(γ)pj = Πj , j = 1, 2.

Here (Π1,Π2) is a minimum of the function

(P1, P2) →
2

∑

j=1

(Pj

16
+

πPj

2
G1(Pj , 0, Pj , 0)

)

+ πP1G(P1, 0, P2, 0).

In this function G is the kernel of the Newtonian potential operator

for axisymmetric sets in the cylindrical coordinates, and G1 is the

second term in the expansion about the singularity of G:

G(r, z, s, t) =
s

4π

∫ 2π

0

dσ
√

r2 + s2 − 2rs cosσ + (z − t)2

=
1

2π
log

1

|(r, z)− (s, t)|
+G1(r, z, s, t).
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A ball and a torus.

Theorem (Pan and R.). The curvaure-potential equation in R
3

admits a solution of volume 1, which is the union of an approximate

ball and an approximate tours, when γ is sufficiently large.

Let l be the radius of the ball, and p and q be the two radii of the

torus (p > q). Then 4πl3

3
+ 2π2pq2 = 1 and

lim
γ→∞

l

f(γ)
=

2

3
, lim

γ→∞

q

f(γ)
= 1, lim

γ→∞
2π2f2(γ)p = 1.
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Stability.

A: axi-symmetry about the z-axis.

M: mirror-symmetry about the xy-plane.

Solutions Stability A Stability A+M Stability

Torus ? Yes Yes

Double Tori No No Yes

Ball-Torus No No No
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