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Outline of My Talk

» Part I: Localized Solutions in Cross-Diffusion Systems
(joint work with T. Kolokolnikov )
(SIAM J. Appl. Math. 2011 online)

» Part Il: Localized Solutions in Chemotaxis System Modeling
LA Crimes
(joint work with T. Kolokolnikov and M. Ward)



Part |: Cross-Diffusion Systems

We first discuss pattern formations in a cross-diffusion system
Standard Diffusion: V(J),J = Vu

Self Diffusion: J = a(z,u)Vu

Cross-diffusion: J = a(z,u,v)Vu

Q: Can cross-diffusion create stable patterns?



A model of cross-diffusion

We consider cross-diffusion model of Shigesada, Kawasaki and
Teramoto (1979)

ug = A[(d1 + pi2v) u] + u(a; — byu — c1v)
vy = A(dg + p21u) v] + v(ag — bju — c1v) (1)
Neumann B.C. on [a, b]

The kinetics are just the classic Lotka-Volterra competition model;
di, do represent self-diffusion

Cross-diffusion (p12, p21) represent inter-species avoidance:
abundance of v will cause u to diffuse faster and vice-versa.



Without cross-diffusion, only constant solution is stable
[Kishimoto, 1981].
A well-studied toy model [Lou, Ni, Yotsutani, Wu, Xu] is [after
scaling]:
{ u = (povu),, +u(ar — biu — c1v) )
Vt = dUg;a: + ’U(CLQ - b1u — 011})

with the following assumptions:

d<1; p>1; all other parameters are positive and of O(1).
(3)
Biologically, when p is large, v acts as an inhibitor on u, so that u
diffuses quickly in the regions of high concentration of v. This
effect is believed to be responsible for the segregation of the two
species.



Construction of steady state in 1D

» Lou, Ni, Yotsutani, 2004: Constructed a steady state in the
form of a spike for u, and in the form of an inverted spike for

V.
» More explicit computations [spike height] by Wu-Xu, 2010.
» Define
T=uv
so that

a
0= dvm+a2v—b27—02v2; 0= pTpe+T71 (ﬁ - blé — cl> ;

» In the limit p — oo the shadow system is:

0 = dvgy + asv — boT + 0202; (5)

(Keener, 1981, Nishiura)



> the solution to dvg, + asv — baT + cav? = 0 can be written as
v = O + Cytanh?(C3x). Matching the integral condition
gives

» asymptotic behavior

v(@) ~ 2% Bt nh? (=) +9 (2 - 3 tank? (2€>>];

/2d
€:=4/— [spike width]
az

2/3 —-2/3
— (e /L)2/33 (Zl 727> <4a1 _ bi — 301) [spike height]

_3 a5
_165202,



1 ——
0.98
0.96
094p __ o ___4
0.92
05 1 05 1 0 05 1
(@) (b) (©
25 25
20 20
15 15
10 10
5 L 5
0 0

0.5 1 0 0.5 1 15 2 -1 0



» v has an inverted spike

v(x) ~ % [w(()) —w (2%) +6 (2 — 3tanh? (%))}

Wy, —w+w?=0; w—0as |y — oo, w(0)=0.

» Note that v(0) ~ ‘;—;5 = 0(62/3); w(0) ~ 0(6_2/3).

» This construction works as long as

b
(4‘“—1—3cl> > 0.
az by c2

» Question: is the solution stable ?



Linearized problem

Linearized equations are
Ap = ddyy + azd — bay) — c22v;
1 2
A ( - qu) = P+ (S b2 5 — e ) v+ (—“” + 2b173> 6.
v v v v v

02
Two kinds of eigenvalues

> large eigenvalues: A = O(1)

» small eigenvalues:\ = o(1)



Principal stability result

Define
— Y3832 b 72/3@ 4ﬂ_ﬁ _ 34 5/3-
PK small * 2 b2 2 21/3 as b2 Cs ’
(7)
po = 0.747p K small; (8)
2 x 0.747
PK large ‘= PK,small (9)

1—cos[r(1-1/K)]



Then:

» A single boundary spike is stable for all p (not exponentially
large in €).

» A double-boundary steady state is stable if p < p; and is
unstable otherwise. The instability is due to a large
eigenvalue.

» A K-interior spike steady state with K > 2 is stable if
p < min (K small, PK,large) and is unstable otherwise. When
K =1, it is stable provided that p is not exponentially large in
€.

» The critical scaling is

p=0(d"?) =023 > 1.



Stability: small vs. large eigenvalues

» K spikes are always stable whenever 1 < p < d~'/3 and
unstable when K > 2 and p > d~1/3.

» Recall that pg jarge := pKvsma”% and
1.494>1, K =2

—{ 0996 <1, K=3
0875 <1, K=4

2 x0.747
1—cos[r(1—-1/K)]

> PK large > PK small if K =2 but PK large < PK small if K> 3. It
follows that the primary instability is due to small eigenvalues
if K = 2but is due to large eigenvalues if K > 3. This is in
agreement with numerical simulations.



Boundary Conditions

Possible boundary conditions (as in van der Ploeg-Doelman,

Indiana Univ.Math. J. 2005):

’ Config type

‘ Boundary conditions for ¢

1 interior spike on [—L, L]
even eigenvalue

¢'(0) =0=¢'(L)

1 interior spike on [—L, L]
odd eigenvalue

$(0) =0 =¢'(L)

2 1/2-spikes at [0, L]

¢'(0) = 0= o(L)

K spikes on [—-L, (2K — 1)L],

¢(L) = zp(=L),  ¢(L)

Periodic BC z=-exp(2mik/K), k=0...K -
K spkes on [ L, (2K ~ DI, | $(L) = 20(-L),  #(L) = 0
Neumann BC z=-exp(mik/K), k=0...K -

(same BC for 1)



Reduced problem, large eigenvalues

» Using asymptotic matching, eventually we get a new
point-weight eigenvalue problem (PWEP):

{ A = By — B + 20D — xP(0) (PWEP)

® is even and is bounded as |y| — oo
where w(y) = 2 sech® (¥) satisfies
Wy —w+w? =0; w—0as |y — oo, w'(0)=0.

» For double-boundary spike,

-2/3 b 5/3 b -2/3 !
X = Xb = €4p <4a1 S 301) C2 (17r> L33,

» For K spikes, Neumann BC, there are K choices for x, namely

2
X = —Xb, k=0...K—1 and x = very large positive.

170057



Analysis of PWEP A0 =&, — & 4 2wd — xP(0)

» A=0, ® = w, is a solution [corresponds to translation
invariance|

» If x = 0 then there is an unstable eigenvalue A\; > 0 and
another eigenvalue A3 < 0.

» Decompose:

O(y) = " + Po(y); where @* = lim O(y).
Yy—=xoo

Then
AP* = —®* — y (P((0) + D)

and ®( satisfies
APy = Py — Py + 2wP + 2wd*
so the PWEP becomes

2x
APy =D — ¢ by — ————=——Py(0)r 10
0 Oyy 0 T 2w YIAF1 0(0)w (10)



2x

APy = Doy — O by — ——
0 Oyy 0 + 2w®Pg AT

CI)()(O)U)
» Anzatz: if &g = w, A =0 then x = %
» Rigorous result: there is an unstable eigenvalue A > 0 for all
1
X <3
» The above two facts seem to suggest: stability when
X > 1777)
2

» In the limit y — oo, the limiting problem is

APy = q)O,yy — ®g 4+ 2wdy — 2@0(0)10 (1].)



Hypergeometric reduction

Theorem: the eigenvalues of A® = &,y — @ + 2wP — xP(0)
are given implicitly by:

A= —1—x+2xP(0)

where

5y(0) 6mA (A +1) 31 1,3,-1/2

O T sin(ma) (AN —5) (4A+3) 2> 2\ 2+4aq, 2-a
a=V1+A

Similar idea has been used in

Doelman-Gardner-Kaper, Mem. AMS 2002, Indiana Univ. Math.
J. 2001

Wei-Winter, MAA 2002, SIAM J.Math.Anal. 2003



» Numerical result+winding argument of Ward-Wei EJAM
2003: all A < 0 whenever y > 0.669; stabilization is via a hopf
bifurcation.

» desperate need for an analytical study of the limiting
eigenvalue problem

)\(I)o = (I)oﬂy — (I)() + 211)(1)() — 2(130(0)11)



Small eigenvalues

» Construct asymmetric spike steady states
» These bifurcate from the symmetric branch

» The instability thresholds for the small eigenvalues correspond
precisely to this bifurcation point!
Iron-Ward-Wei Phys D 2001
van der Ploeg-Doelman, Indiana Univ.Math. J. 2005
Proof is Needed !!!

» Main result: For 2 spikes, small eigenvalues is the dominant
instability. For 3 or more, large eigenvalues dominate.



Radial equilibrium in two dimensions

Consider 2 € R?. Let w be the ground state in 2D:
Aw—w+w?=0; w—0as |yl — oo, maxw = w(0)

and define
m = maxw(y) = w(0) ~ 2.39195.

Suppose that

ai

and consider the asymptotic limit

d<1; p>1. (13)



If Q2 is radially symmetric, there is a steady state at x = 0, in the
form of an inverted spike for v. More precisely, we have

1 a9

v(x) ~

2m —1 C2
70

v(x)

Aw—w+w?=0; w—0as |y — oo, maxw = w(0)

(1=20) (w0) - w (1= %) + 2m - 1)3)

u ~



where
(2m —1)d (m—1)m a3
g = —_— T0 = —
as (2m — 1) baca

2 Adwbym 1

|/ b2 (2m — 1) <Z—;(2m—1)—(m—1)%—mﬂ>7

Cc2

0

In particular,

az . _ N(m—l)m@l_ 1
v(0) ~ 55 = 0(d); u(0) 7(2m - 1>2 by s ) <d> . (14)

Stability:??7?



Interesting patterns: p = O(1)

» Spike insertion, spatio-temporal chaos

Sensitivity to initial conditions. The left and right figure differ only
in the initial conditions. On the left, symmetric initial conditions
result in an intricate a time-periodic solution. On the right, the
initial condition is the same as on the left, except for a shift of 0.1

units to the right. dynamics eventually settle to a 5-spike stable
pattern.
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Part 1l: Localized Solutions in Crime Hotspot Model



UCLA Model of hot-spots in crime

» Recently proposed by Short Brantingham, Bertozzi et.al
[PNAS, 2008].

» Very hot math: e.g. The New York Times, Dec 2010

» Crime is ubiquious but not uniformly distributed

» some neigbourhoods are worse than others, leading to crime
"hot spots”
» Crime hotspots can persist for long time.

Figi 1. Dynamic changes in residential burglary hotspots for two consecutive three-month periods
beginning June 2001 in Long Beach, CA. These density maps were created using ArcGIS.

u— I ~ ~ -~ - 1 A N Y



» Crime is temporally correlated:
» Criminals often return to the spot of previous crime

» If a home was broken into in the past, the likelyhood of
subsequent breaking increases

» Example: graffitti "tagging”

» the motion of criminals towards higher attractiveness areas can
be modeled by chemotaxis



» Two-component model

Ay =e?Ag — A+ pA+ A

UHZD(M—QEAQm—pA+A—A@

» p(z,t) = density of criminals;

» A(x,t) = "attractiveness” of area to crime
» Ay = O(1) = "baseline attractiveness "

>

D(—24A;), models the motion of criminals towards higher
attractiveness areas

A — Ay > 0 is the baseline criminal feed rate

» We assume here:

v

2«1, D>1.



Hot-spot steady state

0=c2Auy — A+ pA+ Ao; 0:D<px—2%Ax> —pA+ A A

> Key trick: p, — 24 A, = A* (pA™2) . This suggests the

change of variables:
p

el

so that

0=c’Ape — A+vA® + Ag;  0=D (A%,), —vA®+ A - A,



> “Shadow limit" Large D:  v(z) ~ vp;
L —
e2Apy — A+ vA3 + Ay = 0; vo/ Addz = (A — Ag) L.
0
> Anzatz: v <1, A~ vo_l/2w(y), y = x /e where w is the
ground state,
Wy, —w+w? =0, w(0)=0, w—0as |yl — oo;
then
2
(25 widy)
417 (A - A0)2 7
2L(A — Ap)

A(z) ~ Efw3 w(x/e),
Ao, r > 0(6)

~



Critical Scaling

Based on previous computations, we now set
Q=(-1,1),
1 A 2 A
A=Ag+-A, v=¢€D
€

D

€

D=
Then the steady-state problem becomes

0=c?A, — A+ d(cAyg+ A)?

0= D <(A0 + 1%1)2@3;) — }@(GAO + ./21)3 + A— Ap.
€ €

x

(15)
(16)



Relation with A Schnakenberg Model

» The steady state problem in 1D is very close to the so-called

Schnakenberg model
0= cupy — u+ vuP
1
0= Duvgy +1— —vuP
€

with p = 3

(17)
(18)



» To see this, we consider the following problem

~ !

D(a(x)vy), = f(z),v (0) =0 (19)

we have

where

> Let us now consider a(z) = (Ao + Zw(%))?, where w > 0 and
w ~ e~ ¥, Then

Ky (x,s) = KA(z) (x,8) + O(els — z|) + O(|[s, =] N (0, 26In%)|)

(21)



Main stability result (1D)

» Main result: Consider K spikes on the domain of size 2K L.
Then small eigenvalues become unstable if D > D, smar;
large eigenvalues become unstable if D > D, ¢mai where

Lt (A - Ap)°
&2 Alr?

Dc,large ~ Dc,small (

Dc,small ~

—_— | > DcS I
T ,sma
1 — cos 74 >

» Small eigenvalues become unstable before the large
eigenvalues.



» Example: Take L=1,A=2,A4y=1, K =2, ¢ = 0.07. Then
D¢ sman = 20.67, D¢ jarge = 41.33.
» if D =15 — two spikes are stable
>

if D =30 = two spikes have very slow developing instability
>

if D =50 = two spikes have very fast developing instability

» very similar behavior to Schnakenberg model

0= cupy — u+ vu?

1
0=Duvg, +1— Zoud.
€

Iron-Wei-Winter, J.Math.Biol. 2003



Stability: large eigenvalues

» Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):

Ao = ¢ —p+3uwip—yx (/ w2¢> w? where W —w+w?® = 0
(22)
with

—1
3 9 mk AZr?
Xy (1“ DU =0 ) i (- ag)®

» This is an oversimplified problem but captures the main
characteristics



Step 2: Key identity: Low? = 3w?, where
Lop := ¢" — ¢ + 3w?¢. Multiply

20—~ ot 3wt x ( [uhs)
by w? and integrate to get

3
Az3—x/w5:3—x2/w3

Conclusion: (22) is stable iff x > j 5 <= D> D, jarge-
This NLEP in 1D can be fully solved!!



Stability: small eigenvalues

vV vVv.v.v Yy

Compute asymmetric spikes

They bifurcate from symmetric branch

The bifurcation point is precisely when D = D, ¢mail.
This is “cheating”... but it gets the correct threshold!!

similar computations to
[ron-Ward-Wei 2001 (for Gierer-Meinhardt system)
[ron-Wei-Winter 2003 (for Schnakenberg model)



Two dimensions

A =e?AA— A+ DA3 + A
T(Ad); = DV - (A’V0) — 0A3 + A — Ay’
Neumann BC

z e

» Steady-state: construction is similar to 1D, but no reduction
to Schnakenberg model
» Stability: of K hot-spots:

» » If K =1, then a single hot-spot is stable with respect to large
eigenvalues, as long as D is not exponentially large in 1/¢.
» If K > 2, then the steady state is stable with respect to large
eigenvalues if
T 3 3 4—2
1. 1(A4-A4 Q" A
D<—41117< O) it 02;
& K3 ([, widy)
and it is unstable otherwise.

1 —1
» Instability thresholds occur when D = O ne > 1.
etK3

(23)



Concluding Summary

v

In both models, the instability thresholds occur close to the
"shadow limit", i.e. the cross-diffusion term is very large.

Steady-state computation is essentially a shadow system, but
stability computations require more.

Cross-diffusion (directed movement) can create stable
multi-spike solutions even in the absence of spatial
heterogenuity.

Chemotaxis system (crime models) can also produce multiple
stable patterns

Stability analysis leads to novel, interesting and new
eigenvalue problems



