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Meta-computation problems

e Circuit SAT

e |Instance: Boolean Circuit C
 Problem: Does there exist an x, C(x)=17

e Circuit #-SAT
* |Instance: Boolean Circuit C
* Problem: Count the number of x, C(x)=1



Meta-computing in derandomization

e Derandomizing PromiseBPP
Instance: Boolean Circuit C

Problem: Estimate Prob_x C(x)=1 to within
small additive error

 Derandomize Polynomial Identity Testing

Instance: Algebraic Circuit A, A(X) non-zero
Problem: Find x so that A(x) #0



Learning as meta-computing

* |Instance: Black-box access to a function f
computed by a circuit in concept class C,
distribution D on inputs to C

* Problem: Find a description of a function f’
closetofonD
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“Zane's Thesis”

* To solve meta-computing problems efficiently,
we need to understand the computational
model of possible inputs. In particular, we need
to be able to prove lower bounds for that model.



Formalizations of Zane’s Thesis

* IKW : Derandomizing PromiseBPP implies
NEXP is not contained in P/poly

» KI: Derandomizing PIT implies that either
NEXP is not contained in P/poly or Perm is not
In AlgP/poly

 FK: Deterministic Learning implies new circuit
lower bounds



Willlams’ Theorem

 Wilhlams ‘10, ‘11

If Circuit-SAT Is solvable in co-non-deterministic
time that is less than 2*n by a super-polynomial
factor, then NEXP is not in P/poly



Why this Is so great!

* Even minute savings over exhaustive search
prove lower bounds!

e Can be translated down to smaller classes of
circuits, giving a general upper bound-lower

bouno

e Actua

duality!
ly was used to prove new lower bounds!

Williams ‘11 proved NEXP not in ACC_0 by

giving

non trivial ACC_0O-SAT algorithm.



Translating down

e Assume C-SAT Is In co-non-deterministic time
T(n), for circuit class C.

e |If P IS not contained in C, we have a lower
bound already. So assume P Is contained in C

e C-TAUT Is In non-deterministic time T, 1.e., small
proofs of C-tautologies.

* \We combine these to give size T*poly(n) proofs
of arbitrary tautologies



Proving arbitrary tautologies

Let A be an arbitrary circuit, expressing a
tautology

For each gate In A, g_|, it is defined as
g _1I=op I(g_J,g k), and output gate is g_out

For each gate I, proof contains B_1, a C-circuit
equivalent to the sub-circuit at g_|

For each gate, prove the C-tautology
B i=pp i(B_j,B_K)

Prove the C-tautology B_out

Greater Expressive Power of a class means
harder SAT nroblem



Structure of SAT-problems

* For which classes of circuits C do improved C-
SAT algorithms exist?

« How much improvement over exhaustive
search is possible?

 How does the power of C-circuits affect the
complexity of C-SAT?



Better SAT algorithms would be
useful

SAT-solvers used in practice, do surprisingly
well for many applications

But really only work well on k-CNFs for small k

Reductions to k-SAT can blow up number of
variables hugely

Performance very sensitive to details of
reduction



Do higher order” SAT heuristics
work well?

« Can we directly solve SAT for more complex
formulas without reducing to k-SAT?

 Can we get similar savings for more
sophisticated goals, like counting number of
satisfying assignments? (Bayesian reasoning)



Generic cryptanalysis

* Block ciphers are desighed somewhat ad hoc

* |deal efficiency, for hardware implementation

 Small number of logic gates, e..g, linear

* Time Is parallel time, so could be constant
time=constant depth

 Key size chosen to be as small as possible, so want
best algorithm for breaking code to be close to
exhaustive search



Can we show these goals are
Incompatible?
 Known message attack: Solve E_K (M)= C for
K given M, C

 Reduces to SAT for whatever circuits compute
E, with n = key size

* S0 better than exhaustive search algorithm for
SAT of linear-size, constant depth formulas

means generic cryptanalysis of overly
optimistic” ciphers.




How to compare SAT algorithms

Improved algorithm:
Runs in time 2*{n(1-s(n,m))} poly (m),

where m Is the size of the circuit, n the number
of variables

s(n,m) = ‘savings”, bigger better
s(n,m)=0 : exhaustive search
s(n,m)=1 : polynomial-time algorithm
Sometimes, only save for small m



For which classes of circults are

iImproved SAT algorithms known?
e k-CNF’s

K-SAT:

s(n,m) = c/k for constant c.

Many algorithms achieve this: PPZ, Schoning,
PPSZ, this work, etc.

o kK-#SAT:. s(n,m) = exp (-K) [ILP]
s(n,m) = c/k (this work)




CNF SAT

o SAT: s(n,m) = O(1/log (m/n)) [Shuler]

o #SAT s(n,m) = O(1/log (m/n)) [This work,
Shuler?]




Constant depth (AC_0) circuits

e AC 0-SAT:

CIP : s(n,m) = 1/(m/n)2"d} (Only good when m
linear in n)

Williams : s(n,m)= 1/n™1-2"-d}
BIS : s(n,m)=1/n"a, any a > 0, m quasi-polynomial



Our main result

» Zero-error probabilistic AC_0-SAT and #-SAT
algorithms with

s(n,m) = 1/(log (m/n)){d-1}

« Matches best bounds for CNF-SAT

* Any improvement shows NEXP not contained
INn NC 1



Connection to lower bounds

 Uses standard lower bound technique:
switching lemma

* Extends by proving joint switching lemma for
families of CNF’s

e GIves new circuit lower bound:

Correlation with parity at most 2*{-n/(log
(m/n))Md-1}} (Improves on Ajtai, BIS 2M-n™{1-
a}}, independently discovered by Hastad 11)



Hastad Switching Lemma

* Let C be a k-CNF. Let rho be a restriction that
assigns variables * with probabillity p, and
otherwise assigns them independent random
bits. Then the probability that the canonical
decision tree for C|rho has depth at least h

IS at most (cpk)”*h for some absolute constant c.
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