A Salmon's Perspective on Spatial Ecology

Roger M. Nisbet¹, Laure Pecquerie¹, Kurt E. Anderson², Lee Harrison¹

- 1. University of California, Santa Barbara
- 2. University of California, Riverside

Remark on "spatial ecology"

Population dynamics involves **behavior**, **physiology and space**

Minimal representation of physiology recognizes **life cycles** (organisms are not molecules)

Structured population dynamics approach:

- Define i-state variables (characterizing individual)
- Define environmental variables
- Construct model of i-state dynamics (commonly system of ODEs + renewal rule)
- Derive p-state dynamics (often involves describing dynamics of cohorts)

Salmon

- Populations of Pacific salmon are declining over much of Western Canada and USA
- Much effort to maintain/restore these populations: hatcheries, habitat restoration, water flow management, ... and more
- Relevance for <u>general</u> theory
 - complex life cycle
 - multiple habitats
 - nature of available data
- → Practical question: impacts of management measures at one location (e.g. changes in river flow regime)?

Distribution of Oncorhynchus Genus

5 species of Pacific salmon (anadromous, semelparous)

Augerot (2005). Atlas of Pacific salmon

Salmon life cycle

Estuarine

Danner et al., [2010]

Local environments

From

Size impacts: Spatial scale for modeling feeding Temporal scale for turnover of carbon

Differences in scales by factors ~100 over life cycle

Modeling challenges

Computational issues

•3D fluid modeling practical only over a few km of river (P. Steffler – Ottawa river workshop)

Biological issues

•Fish return to home stream - many "populations"

•Current models of individual stages are parameter-rich

Data issues

Vast amounts of data (except for ocean) but from different species, populations, conditions (e.g. hatchery fish)

Our approach: follow individuals

1) Construct and test "dynamic energy budget" (or bioenergetic) model for all life stages

- 2) Spatial considerations different for each life stage:
 - Oxygen delivery to eggs
 - Food availability for youngest fish
 - Migration "decisions"

Our approach: follow individuals

1) Construct and test "dynamic energy budget" (or bioenergetic) model for all life stages

2) Spatial considerations different for each life stage:

- Oxygen delivery to eggs
- Food availability for youngest fish
- Migration "decisions"

Full life cycle model for Pacific salmon based on Dynamic Energy Budget (DEB) theory.

DEB theory¹: conceptual framework that integrates info from all life stages (embryo, juvenile, adult)

- Multiple stressors (limited food, high temperature, disease, parasitism, contaminants) can be modeled
- Synthesis of data from five salmon species to test the assumptions and predictions of the DEB model – essential prerequisite to applications
- Use of information from the data synthesis to parameterize the model for Chinook salmon (*Oncorhynchus tshawytscha*) for work in Merced River
- 1. Kooijman, S.A.L.M. Dynamic Energy Budget Theory for Metabolic Organization. Cambridge University Press, 2010
- 2. Ecological overview in Nisbet, R.M. et al. (2000). Journal of Animal Ecology 69:913-926.
- 3. Tightly written summary of model in Sousa, T. et al. 2010. *Philosophical Transactions of the Royal Society B*, 365 : 3413-3428

Life events in a standard DEB model

Notation for Kooijman's DEB model

Dynamic equations for Kooijman's DEB model I: Mass balance equations

$$\begin{aligned} \frac{d}{dt}M_{R} &= \dot{J}_{RA} - \dot{J}_{RC} \\ \frac{d}{dt}M_{V} &= \dot{J}_{VQ} = (\kappa \dot{J}_{RC} - \dot{J}_{RM})y_{VR} \\ \frac{d}{dt}M_{H} &= (1-\kappa)\dot{J}_{RC} - \dot{J}_{RJ} \quad \text{if } M_{H} < M_{H}^{P} \quad \text{, else } \frac{d}{dt}M_{H} = 0 \\ \frac{d}{dt}M_{RR} &= 0 \quad \text{if } M_{H} < M_{H}^{P} \quad \text{, else } \frac{d}{dt}M_{RR} = (1-\kappa)\dot{J}_{RC} - \dot{J}_{RJ} \end{aligned}$$

Dynamic equations for Kooijman's DEB model II:

Flux formulae and required definitions

$$\dot{J}_{EA} = c(T)f\{\dot{J}_{EAm}\}L^{2} \quad \text{if } M_{H} \ge M_{H}^{b} \quad \text{else } \dot{J}_{EA} = 0$$

$$\dot{J}_{EC} = c(T)\{\dot{J}_{EAm}\}L^{2} \frac{ge}{g+e}\left(1+\frac{L}{gL_{m}}\right)$$

$$\dot{J}_{EM} = c(T)[\dot{J}_{EM}]L^{3}$$

$$\dot{J}_{EJ} = c(T)\dot{k}_{J}M_{H}$$

$$e^{-\frac{i}{V}}\frac{[M_{V}]M_{E}}{M_{V}}$$

$$L = \left(\frac{M_{V}}{[M_{V}]}\right)^{1/3}$$

$$c(T) = \exp\left(\frac{T_{A}}{T_{1}} - \frac{T_{A}}{T}\right)$$

Parameters in "standard" DEB model¹

- Kooijman's theory predicts that many invariant parameters that take values that depend only on temperature
- Others have predictable inter-specific variation
- Inter-species differences characterized by zoom factor (=ratio of animal length to reference animal of length 1cm

 For many examples see :http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/add_my_pet.pdf

Parameters in "standard" DEB model

Primary parameters					
T_A	8000	К	Arrhenius temperature		
$\{\dot{J}_{EAm}\}$	0.0413 Z	mmol.cm ⁻² .d ⁻¹	Maximum surface-area-specific assimilation rate		
$[{\dot J}_{_{E\!M}}]$	0.033	$mmol.cm^{-3}.d^{-1}$	Volume-specific somatic maintenance rate		
$[M_V]$	4	mmol.cm ⁻³	Volume-specific structural mass		
<i>v</i>	0.02	$cm.d^{-1}$	Energy conductance		
K Y _{VE}	0.8 0.8		Fraction of utilized reserve to growth + maintenance Yield of structure from reserve in growth		
\dot{k}_{J}	0.002	d ⁻¹	Maturity maintenance rate coefficient		
${M}_{H}^{b}$	$0.00005 z^3$	mmol	Maturity threshold at birth		
M_{H}^{p}	$0.3 z^{3}$	mmol	Maturity threshold at puberty		
κ_{R}	0.95		Fraction of the reproduction buffer fixed into eggs		

Applying the DEB model to salmon¹

- Step 1: To which extent body-size scaling relationships apply to the 5 North-American species of Pacific salmon?
 - → Standard DEB model + Zoom factor z
 - + Generalized animal parameters

= null model to understand species differences (selection of specific traits?)

Step 2: Develop a 'generalized salmon' model: <u>simplest</u> individual model that <u>closes the life cycle</u> and captures main salmon life-history traits

1) Pecquerie, L., Johnson, L.R., Kooijman, S.A.L.M., and Nisbet, R.M.n (in review) Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory, *Journal of Sea Research.*

Results (1): Inter-species level

Results (1): Inter-species level

-	Life-history traits	Observations	Agreement
	Female length at spawning	pink < sockeye < coho < chum < chinook	Reference for our comparison
\ <u></u>	1) Reproductive material	pink < sockeye < coho < chum < chinook	Yes
	2) Fecundity	pink < coho ≈ chum < sockeye < chinook	Yes
	3) Egg wet weight	<pre>sockeye < pink < coho < chum < chinook</pre>	Yes
`	4) Length at emergence	sockeye < pink < coho < chum ≈ chinook	Yes
	5) Age at emergence	<pre>coho < chum < pink < chinook ≈ sockeye (5°C) coho < chum ≈ chinook < pink ≈ sockeye (10°C)</pre>	Right order of magnitude but not the rank

Results (2): Intra-species level - Embryo stage

Patterns	Observations	Agreement
1) Length at emergence as a function of egg wet weight	Larger eggs produce larger fry	Yes
2) Weight-Length relationship at emergence	Allometric	Yes
3) Age at emergence as a function of egg wet weight	In Chinook, age at emergence slightly increases with egg weight at 10C or stay constant at other temperatures)	Νο
4) Length at emergence as a function of temperature	In Chinook, length at emergence decreases with temperature	Νο
5) Age at emergence as a function of temperature	Age at emergence decreases with temperature	Yes

Results (2): Intra-species level - Adult stage

Patterns	Observations	Agreement
 Female length and age as a function of growth history during the ocean stage 	Individuals that grow faster return at a smaller size and a younger age	Yes
7) Female condition as a functionof the duration and/or distance ofthe spawning migration	Female condition decreases with the length of the spawning migration	Yes
8) Female condition as a function of female length at spawning	Larger individuals are in better condition after spawning migration	Yes
9) Fecundity as a function of female length	Fecundity increases with length	Yes
10) Egg wet weight as a function of female length	Egg weight increases with female length	Yes

Results (3) – Calibration to Chinook data

Deculte (2) Collibration to Chinook data

Summary - DEB model work

- We have a generic model for the life cycle of a Pacific salmon
- We need more details for the impact of temperature on metabolic processes
- Model captures most of the variation in life-history traits among the 5 species of Pacific salmon in North-America – some additions still required
- Model captures many patterns at the intra-species level
- Promising fits of the model to Chinook data work in progress

Next steps with DEB model

Short-term:

- Include more data for Chinook model (Bayesian framework)
- Juveniles: individual growth AND development rates in varying flow conditions
- Eggs: oxygen limitations
- Analyzing otolith and scale patterns to reconstruct individual food histories

Long-term:

- Coupling with 2D model (river, coastal ocean)
- Adults: survival during migration, female condition after migration
- Long-term population growth rates requires careful interpretation of survival data

Spatial variability in food for young salmon

Recent ecological theory¹ provides methodology relating habitat variability to population distributions

- Applicable to benthic invertebrates food for young salmon
- Untested in real rivers with complex geometry and flow
- Opens possibility of modeling effects of habitat variability over larger stretches of river

Ongoing work:

- Uses a 2-D hydraulic model of a re-engineered section of the Merced River to describe the transport and settlement of macroinvertebrates – essential prerequisite to applications
- Evaluates the validity of 1-D approximations to Merced River hydrology new efficient methodology for habitat descriptions

- 1. Anderson, K.E., Nisbet, R. M. and Diehl, S. 2006. Spatial scaling of consumer-resource interactions in advection dominated systems. *American Naturalist*, **168**: 358-372.
- 2. Nisbet, R.M., Anderson, K.E., McCauley, E., and Lewis, M.A. 2007. Response of equilibrium states to spatial environmental heterogeneity in advective systems. *Mathematical Biosciences and Engineering* 4: 1-13.

Field Site Robinson Reach, Merced River

- o Recently re-engineered reach of the Merced River, CA.
- o Single-thread, meandering planform, with alternating deep pools and shallow riffles.
- o Utilized existing topographic and hydraulic data sets that were collected with collaborators Tom Dunne (UCSB) and Carl Legleiter (U Wyoming).

Drift Modeling

MIKE 21 Code (DHI)

- o LaGrangian Particle Tracking Algorithm
 - Particle concentration
 - Particle trajectory
- o Vertical Profile
 - Assumed logarithmic form
- o Transport Processes
 - Invertebrates released at 0.6*h
- o Settlement Processes
 - Accounts for the time an organism spends in the drift given its settling velocity (ω_s)
 - Invertebrates removed from simulation once settled out of drift
- o Dispersion
 - Random-walk approach
 - Values calculated as a function of the eddy viscosity

Modeling Approach

- o Input "bugs" into upstream boundary
- o Compute drift concentration and particle pathways
- o Utilize a range of settling velocity (ω_s) and dispersion (D) values from the literature.

Runs:

- 1. Baseflow (6.4 m³/s)
- 2. 0.75*Bankfull Q (32.5 m³/s)
- 3. For each Q, 12 runs varying ω_s and D

Sample Results: Flow Field Q = 6.4 m³/s

o Velocity is uniform through straight riffles

o Peak velocity located in curved pools

Sample Results: Travel Distance Q = 32.5 m³/s; ω_s = 0.005 m²/s; *LEV* = 0.01 m²/s

o Dispersion decreases mean travel distance but increases variance

2D Flow-Drift Summary

- We have a validated 2D flow model of the Merced River
- Model is capable of computing drift transport and settlement at low and high flows
- Preliminary Results:
 - 1. Invert pathways dictated by high velocity core.
 - 2. Invert travel distances:
 - − ↑ with flow velocity
 - \downarrow decrease with higher ω_s
 - 3. Dispersion increases the variance in dispersal distances.
- Needs compared with1D flow-drift transport models

- Stochastic simulation of discrete individuals¹
- Timing of entry/exit times drawn from exponential distribution
- Drift modeled as biased random walk

1. Kolpas, A. & Nisbet, R.M. (2010). Bulletin of Mathematical Biology, 72 : 1254-1270.

Dispersal distribution

Dispersal distribution

Dispersal distribution

Discharge = 6.4 m³/s, Emigration = 0.001 s⁻¹, Settlement = 0.00962 s⁻¹

Initial Conclusions

 Inverts appear to follow similar trajectories at low and high flows

- Invert pathways dictated by high velocity core
- Travel distance varies with assumed interaction with flow conditions
 - Qualitatively similar between 1D and 2D
- With spatially uniform rates of entry and exit from benthos, more end up in riffles – consistent with observations on Baetis

Food delivery

- Tests of 1D model in more complex hydrology
- Complex structure (e.g. woody debris, boulders, gravel augmentation)
- Representation of "behavior" in inverts (entry/exit)
- Characteristic length scales to guide appropriate resolution of habitat descriptions

Take-home Messages

• "Interface of environmental science and spatial ecology" requires consideration of organism life cycles

•DEB theory offers parameter-sparse representation of complete life cycles and gives first cut at parameters

- •Relevant spatial scales may vary greatly over a lifetime
- •Spatial effects may (sometimes) be modeled stage by stage

Take-home Messages

•"Interface of environmental science and spatial ecology" requires consideration of organism life cycles

•DEB theory offers parameter-sparse representation of complete life cycles and gives first cut at parameters

- •Relevant spatial scales may vary greatly over a lifetime
- •Spatial effects may (sometimes) be modeled stage by stage

Acknowledgements

Thanks to:

Lindsey Albertson Alison Amenta **Brad Cardinale** Erik Danner Tom Dunne Masami Fujiwara **Bill Gurney** Leah Johnson Bruce Kendall Alison Kolpas Bas Kooijman Steve Lindley Jonathan Sarhad Joe Stover John Williams Julio Zyserman

Funding:

California Energy Commission Public Interest Energy Research Program

National Science Foundation

NOAA

Delta Stewardship Council, Delta Science Program

UC-Riverside