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Homogeneous Environment - Constant Coefficients

Logistic equation (ODE)
ur = u(a—u)

where a > 0 constant: carrying capacity.
With spatial variables (PDE)

u=dAu+ula—u) inQx(0,T),
ou=0 on 002 x (0, T),

where d > 0, u = u(x, t) and Q: bounded smooth domain in RV;

2
A= Z 88_)(;? 9, = % and v is the unit outer normal on 9.

i=1
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Homogeneous Environment - Constant Coefficients
Logistic equation (ODE)
ur=u(a—u)

where a > 0 constant: carrying capacity.
With spatial variables (PDE)

u=dAu+ula—u) inQx(0,T),
ou=0 on 9 x (0, T),

where d > 0, u = u(x, t) and Q: bounded smooth domain in RV;

2
A= Z 68)(;2 9, = % and v is the unit outer normal on 9.

i=1

Fact: The unique steady state (s.s.) u = ais globally asymptotically
stable.
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Heterogeneous Environment
In a heterogeneous environment m(x) > 0, nonconstant

ur=dAu+u(m(x)—u) inQx(0,T),
ou=20 on 002 x (0, T).
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Heterogeneous Environment

In a heterogeneous environment m(x) > 0, nonconstant

ur=dAu+u(m(x)—u) inQx(0,T),
ou=0 on 90 x (0, T).

Fact: For every d > 0, there exists unique positive s.s. denoted by 6.
Moreover, 64 is globally asymptotically stable.
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Heterogeneous Environment

In a heterogeneous environment m(x) > 0, nonconstant

ur=dAu+u(m(x)—u) inQx(0,T),
ou=0 on 90 x (0, T).

Fact: For every d > 0, there exists unique positive s.s. denoted by 6.
Moreover, 64 is globally asymptotically stable.

@ Observe that [Lou, 2006]

0=dJ, ", |V0d| + Joam— Jq 04

= / Oq > / m(x) vd > 0, since 64 # const.
Q Q
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i.e. the total population is always greater than the total carrying
capacity!
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9 m asd — 0,
d=7 7.— 1
m:= g Jom asd— oo

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 4/37



i.e. the total population is always greater than the total carrying
capacity!

Moreover, [, 04 — [, m(x)as d — 0 or oo, since

9 m asd — 0,
d=7 7.— 1
m:= g Jom asd— oo

Open: What is the value
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Lotka-Volterra Competition

Lotka-Volterra competition system (ODE):

Ut = U(a1 — b1 U— Cq V) in (0, T),
Vt = V(ag — bgU— CQV) in (07 T

@ a;: carrying capacity / intrinsic growth rate;
@ by, co: intra-specific competition;
@ by, cq: inter-specific competition

are all positive constants.
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Slower diffuser always prevails!

Consider the following Lotka-Volterra system

Ui =diAU+ U(m(x)—U-V)
Vi=bAV + V(m(x)—U- V)
o,U=9,V=0

U(x,0) = Ug(x) > 0, V(x,0) = Vp(x) >0
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Slower diffuser always prevails!

Consider the following Lotka-Volterra system

Ur = i AU + U(m(x) — U — V) in Q x (0, T)
Vi = AV + V(m(x) — U— V) in Q % (0, T)
a,U=0,V=0 on 9Q x (0, T)

U(x,0) = Up(x) >0, V(x,0) = Vpo(x) >0 inQ.

@ If dy < db, then (U, V) — (64,,0) as t — oo regardless of U, V.
(aslong as Uy # 0, V #£ 0) [Dockery, Hutson, Mischaikow and
Pernarowski (1998)]
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Slower diffuser always prevails!

Consider the following Lotka-Volterra system

Ur = i AU + U(m(x) — U — V) in Q x (0, T)
Vi = AV + V(m(x) — U— V) in Q % (0, T)
a,U=0,V=0 on 9Q x (0, T)

U(x,0) = Up(x) >0, V(x,0) = Vpo(x) >0 inQ.

@ If dy < db, then (U, V) — (64,,0) as t — oo regardless of U, V.
(aslong as Uy # 0, V #£ 0) [Dockery, Hutson, Mischaikow and
Pernarowski (1998)]

@ "Slower diffuser always prevails!”
@ "Degenerate” case: d; = db.
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Slower diffuser always prevails!
Theorem (DHMP)

If di < db, then (64,,0) is globally asymp. stable, while (0, 60,) is
unstable.
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Slower diffuser always prevails!
Theorem (DHMP)

If di < db, then (64,,0) is globally asymp. stable, while (0, 60,) is
unstable.

(0.0, s

\
Y R F
6,,0)

@ Open Problem: If there are 3 or more competing species involved,
it is NOT KNOWN if the slowest diffuser would prevail.
Wei-Ming Ni (ECNU and Minnesota)
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Slower diffuser always prevails!

The proof consists of two steps:

@ (i) (64,,0)is asymp. stable and (0, 64,) is unstable.
(ii) There is no other nonnegative s.s. than (0,0).

(This step works for general n species.)
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Slower diffuser always prevails!

The proof consists of two steps:

@ (i) (04,,0)is asymp. stable and (0, 6y,) is unstable.
(i) There is no other nonnegative s.s. than (0,0).

(This step works for general n species.)

@ To conclude from theory of monotone flow that (64, 0) is globally
asymp. stable. (Existence of connecting orbit.)

[This requires n = 2 (2 species, 2 x 2 system)]
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Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—bQU—CQV) in Q x (0, T)

Uy =adiAU + U(a1 —b1U—C1V) in Q x (0, T)
9,U=08,V=0 on 9Q x (0, T)

@ a;: intrinsic growth rate;
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Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—b2U—02V) in Q x (0, T)

Uy =adiAU + U(a1 —b1U—C1V) in Q x (0, T)
o,U=08,V=0 on 9Q x (0, T)

@ g;: intrinsic growth rate;

@ by, co: intra-specific competition;

@ by, cq: inter-specific competition
are all positive constants
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Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—b2U—02V) in Q x (0, T)

Uy =adiAU + U(a1 —b1U—C1V) in Q x (0, T)
o,U=08,V=0 on 9Q x (0, T)

@ g;: intrinsic growth rate;

@ by, co: intra-specific competition;

@ by, cq: inter-specific competition
are all positive constants

@ Weak competition:
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Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous
environment:

Vi=dbAV + V(ag—b2U—02V) in Q x (0, T)

Uy =adiAU + U(a1 —b1U—C1V) in Q x (0, T)
o,U=08,V=0 on 9Q x (0, T)

@ g;: intrinsic growth rate;

@ by, co: intra-specific competition;
@ by, cq: inter-specific competition
are all positive constants

a

ition: P> @ < G
@ Weak competition: by~ a > G
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Homogeneous Environment - Constant Coefficients

' . by a4 Cq
Weak competition : I

o
E / U~y
VAR
A
Fig.1 b]
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Homogeneous Environment - Constant Coefficients

tion: 21~ a 5 o
Weak competition : gt > 21 > .

o>
2 / WU*,7%)
VAR
g
Fig.1 b]

Four constant steady states: (0,0), (§+,0), (0, 2), and
(U>0<7 V*) — (3102—3201 b132—b231)

byco—bocy? byca—bocy
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Homogeneous Environment - Constant Coefficients

@ (U*, V*)is globally asymptotically stable in [U > 0, V > 0]. (No
nontrivial co-existence steady states.)
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Homogeneous Environment - Constant Coefficients
@ (U*, V*)is globally asymptotically stable in [U > 0, V > 0]. (No
nontrivial co-existence steady states.)

Proof.
Lyapunov functional [S.-B. Hsu (1977)]

E(U, V)(t) =
U Vv
/ bo (U= U~ Ulog =) + ¢ (V= V' — v log — ) | ax
o U+ Vv
Then ZE(U, V)(t) <0Vt >0and"” =" holds only when
U= U V=V~ O
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Heterogeneous Environment

Consider 0 < b, ¢ < 1 (weak competition)

AU+ Um(x)—U—cV)=0 inQ
(1) AV +V(m(x)—bU—-V)=0 inQ
auU:aVVZO on 0N

Theorem (Lou (2006))

There exists b, < 1 such that for all b > b, there exists c* < 1 small
such that if c < c¢*, (04,,0) is globally asymp. stable for some dy < db.
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Heterogeneous Environment

Consider 0 < b, ¢ < 1 (weak competition)

AV + V(m(x)—bU—V)=0 inQ
8VU28VV:0 on 0N

{ AU+ Umx)—U-cV)=0 inQ
(1)
Theorem (Lou (2006))

There exists b, < 1 such that for all b > b, there exists c* < 1 small
such that if c < c¢*, (04,,0) is globally asymp. stable for some dy < db.

b= gt [,/ [0

In particular, for some 0 < b, ¢ < 1 and d;, d», U will wipe out V, and
coexistence is no longer possible even when the competition is weak!

Here
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@ b < b, = (04,,0) unstable (regardless of dy, ds, ¢)

Wei-Ming Ni (ECNU and Minnesota)

Mathematics of Diffusion



@ b < b, = (0g,,0) unstable (regardless of dy, d>, ¢)
® b> b, = (0,0) stable for d; € (d,d) and dx > 1/\(m — bbg,)
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@ b < b, = (0g,,0) unstable (regardless of dy, d>, ¢)
® b> b, = (0,0) stable for d; € (d,d) and dx > 1/\(m — bbg,)

S
|
1
1
1
1
1
1
:
e e e e M e

d d d1
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@ b < b, = (0g,,0) unstable (regardless of dy, d>, ¢)
® b> b, = (0,0) stable for d; € (d,d) and dx > 1/\(m — bbg,)

b e e e

d d

dl

@ b > b,,c small, for above di, d» = no co-existence
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@ b < b, = (0g,,0) unstable (regardless of dy, d>, ¢)
® b> b, = (0,0) stable for d; € (d,d) and dx > 1/\(m — bbg,)

b e e e

d d

d1
@ b > b,,c small, for above di, d» = no co-existence
@ (0,04,) unstable if d; < d» (independent of b, ¢)
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Recent Progress [Lam and Ni]
Consider
{ AU+ Um(x)—U—-cV)=0 inQ
1) (

bAV + V(m(x)—bU—V)=0 inQ
a,U=0,V=0 on a0
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Recent Progress [Lam and Ni]
Consider

diAU+Um(x)—U—-cV)=0 inQ
(1) bAV +V(mx)—bU—-V)=0 inQ
o,U=0,V=0 on 99
() Foranye,35(e) >0s.t. for1 —d<b<1,0<c<1,e<dy<1/e
and dr > dj + ¢, (84,,0) is globally asymp. stable.
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Recent Progress [Lam and Ni]
Consider

-U-c
bAV +V(mx)—bU—-V)=0 inQ

diAU + U(m(x) V) =0 inQ
(1) (
oU=90,V=0 on 012

() Foranye,35(e) >0s.t. fort —d<b<1,0<c<1,e<di<1/e
and dr > dj + ¢, (84,,0) is globally asymp. stable.

Remark: Interesting that ¢ could be bigger than b in (I).
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Recent Progress [Lam and Ni]

Consider
diAU+Um(x)—U—-cV)=0 inQ
(1) AV + V(m(x)—bU—-V)=0 inQ
81/U = 81/ V=0 on 90

() Foranye,35(e) >0s.t. fort —d<b<1,0<c<1,e<di<1/e
and dr > dj + ¢, (84,,0) is globally asymp. stable.

Remark: Interesting that ¢ could be bigger than b in (I).

(II) For0 < b,c <1,3e>0s.t. if |di — db| < e then 3 unique positive
s. (U, V). Moreover (U, ) is globally asymp. stable; and if
d1,d2 — d >0, then

PR 1 1-c¢
0.9~ 75 (15 )%
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Globally Stable Coexistence S.S.

The region shaded blue represent the (dy, d>) for which there exists a
unique coexistence s.s. which is globally asymp. stable.)

d2

[Hutson, Lou and b £ 1 dl
Mischaikow]
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Discussions: Fitness in terms of Diffusion Rate

Return to the single species

ur=dAu+u(m(x)—u) inQx(0,T),
o,u=0 on 0Q x (0, T).
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Discussions: Fitness in terms of Diffusion Rate

Return to the single species

ur=dAu+u(m(x)—u) inQx(0,T),
o,u=0 on 0Q x (0, T).

@ We define the "total fitness” of the unique s.s. 64 as follows:

F(d) = /Q 6g— m)

Conjecture: F(d) is monotonically increasing in d > 0.
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Discussions: Fitness in terms of Diffusion Rate

Return to the single species

ur=dAu+u(m(x)—u) inQx(0,T),
ou=20 on 002 x (0, T).

@ We define the "total fitness” of the unique s.s. 64 as follows:
Flo) = [ 166~ ml
Q
Conjecture: F(d) is monotonically increasing in d > 0.
@ Recall that b, = infy~om/0,.

Question: Is b, bounded below by a positive constant indep of m?
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Discussions: Slower diffuser always prevails?
Consider a special case

U = di AU+ U(m(x) — U — bV) inQ x (0,T)
@ | Vi=®AVEV(mix) - bU-V) in Q x (0, T)
a,U=08,V=0 on 9Q x (0, T)

U(x,0) = Up(x) > 0, V(x,0) = Vo(x) >0 inQ

where b =1 — ¢ close to 1. [Lam-Ni] indicates, U does not seem to
fare better as d; decreases from ad» to 0.
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Discussions: Slower diffuser always prevails?
Consider a special case

Ui = di AU+ U(m(x) — U —bV) inQx(0,7)
@) Vi=dbAV + V(m(x) — bU — V) inQ x (0,7)
o,U=0,V=0 on 9 x (0, T)

U(x,0) = Up(x) > 0, V(x,0) = Vo(x) >0 inQ

where b =1 — ¢ close to 1. [Lam-Ni] indicates, U does not seem to
fare better as d; decreases from ad» to 0.
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Directed movements

In reality, few species move completely randomly. It is plausible that
diffusion combined with directed movement will help the species
maximize its chances of survival.
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Directed movements

In reality, few species move completely randomly. It is plausible that
diffusion combined with directed movement will help the species
maximize its chances of survival.

Strategies?
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Directed movements

Consider the following Lotka-Volterra competition system proposed by
[Cantrell, Cosner and Lou (2006)] based on an earlier single equation
model of [Belgacem and Cosner (1995)].

U=V - (VU —aUVm)+ Um(x) = U—V) inQx(0,T)

@] Ve= AV £ V(m(x) U~ V) inQ x (0, 7)
&d,U — ald,m= 0,V =0 on 99 x (0, T)
U(Xv 0) = UO(X) >0, V(X70) = VO(X) >0 in Q,

where
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Directed movements

Consider the following Lotka-Volterra competition system proposed by
[Cantrell, Cosner and Lou (2006)] based on an earlier single equation
model of [Belgacem and Cosner (1995)].

U=V - (VU —aUVm)+ Um(x) = U—V) inQx(0,T)

@] Ve= AV £ V(m(x) U~ V) inQ x (0, 7)
&d,U — ald,m= 0,V =0 on 99 x (0, T)
U(X7 0) = UO(X) >0, V(X,O) = VO(X) >0 in Q,

where

@ V. - divergence operator, V - gradient operator.

@ Uis assumed to be "smarter” while V still disperses randomly.
@ « > 0 measures the strength of "directed” movement of U.

@ No-flux boundary conditions imposed.
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Directed movements

Consider the following Lotka-Volterra competition system proposed by
[Cantrell, Cosner and Lou (2006)] based on an earlier single equation
model of [Belgacem and Cosner (1995)].

U=V - (VU —aUVm)+ Um(x) = U—V) inQx(0,T)

@] Ve= AV £ V(m(x) U~ V) inQ x (0, 7)
&d,U — ald,m= 0,V =0 on 99 x (0, T)
U(X7 0) = UO(X) >0, V(X,O) = VO(X) >0 in Q,

where

@ V. - divergence operator, V - gradient operator.

@ Uis assumed to be "smarter” while V still disperses randomly.
@ « > 0 measures the strength of "directed” movement of U.

@ No-flux boundary conditions imposed.

@ How will U and V compete?
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Advection-Mediated Coexistence

@ When d; < d,, the "slower diffuser” U always wipes out V while it
is not much smarter than V (when a > 0 is small) [Cantrell,
Cosner and Lou (2006)].
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Advection-Mediated Coexistence

@ When d; < d,, the "slower diffuser” U always wipes out V while it
is not much smarter than V (when « > 0 is small) [Cantrell,
Cosner and Lou (2006)].

@ V always survives when U becomes "too smart” (when « large).

Theorem ([Cantrell, Cosner and Lou, (2007)])
Assume

(a) {critical points of m} has measure 0;

(b) 3xo € Q s.t. m(xp) = maxg m is a strict local max.

= Vdy, db, (3) has a stable coexistence s.s. (Uy, V), Uy >0, V, >0
for every « large.
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Advection-Mediated Coexistence

@ When d; < d,, the "slower diffuser” U always wipes out V while it
is not much smarter than V (when « > 0 is small) [Cantrell,
Cosner and Lou (2006)].

@ V always survives when U becomes "too smart” (when « large).

Theorem ([Cantrell, Cosner and Lou, (2007)])
Assume

(a) {critical points of m} has measure 0;

(b) 3xo € Q s.t. m(xp) = maxg m is a strict local max.

= Vdy, db, (3) has a stable coexistence s.s. (Uy, V), Uy >0, V, >0
for every « large.

@ Shape of (U,, V,)?
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A Conjecture

In [Cantrell, Cosner and Lou (2007)], it is shown that whenever the set
of critical points of m is of measure zero, then V s.s. (U,, V,,) of (3),

U, — 0in L2 and V, — g, in C'"F as a — .
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A Conjecture

In [Cantrell, Cosner and Lou (2007)], it is shown that whenever the set
of critical points of m is of measure zero, then V s.s. (U,, V,,) of (3),

U, — 0in L2 and V, — g, in C'"F as a — .

Conjecture ([Cantrell, Cosner and Lou (2007)])

(3) has a unique coexistence s.s. (U,, V) which is globally asymp.
stable, and, as a« — oo, U, concentrates at all local maximum points of
m(x) in Q.
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In [X. Chen and Lou (2008)], important progress on the conjecture was
made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point xq on Q which is a
non-degenerate global max point, xo € Q and 9,m < 0 on 092. Then,
as a — oo,
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In [X. Chen and Lou (2008)], important progress on the conjecture was
made when m has a unique non-degenerate global maximum point.
Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point xq on Q which is a
non-degenerate global max point, xo € Q and 9,m < 0 on 092. Then,
as a — oo,

(i) Vo — 0q, in C1P(Q) and

a (y 3 \T D2 _
(i) ||U.€% (x=X0) " D=m(x0)(x—X0) 2N/2[m(xo) . 9d2(X0)1||L°°(Q) 0.
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In [X. Chen and Lou (2008)], important progress on the conjecture was
made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point xq on Q which is a
non-degenerate global max point, xo € Q and 9,m < 0 on 092. Then,
as a — oo,

(i) Vo — 0q, in C1P(Q) and

a (y 3 \T D2 _
(ii) ||Un% (x=X0) " D=m(x0)(x—X0) 2N/2[m(xo) . 9d2(X0)1||L°°(Q) 0.

The factor 2V/2[m(xy) — 04,(x0)] > 0 comes from
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In [X. Chen and Lou (2008)], important progress on the conjecture was
made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point xq on Q which is a
non-degenerate global max point, xo € Q and 9,m < 0 on 092. Then,
as a — oo,

(i) Vo — 0q, in C1P(Q) and

a (y 3 \T D2 _
(ii) ||Un% (x=X0) " D=m(x0)(x—X0) 2N/2[m(xo) . 9d2(X0)1||L°°(Q) 0.

The factor 2V/2[m(xy) — 04,(x0)] > 0 comes from

0 Uy(x) ~ eﬁ(X*XO)Tmm(Xo)(X*Xo)

at xp,
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In [X. Chen and Lou (2008)], important progress on the conjecture was
made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point xq on Q which is a
non-degenerate global max point, xo € Q and 9,m < 0 on 092. Then,
as a — oo,

(i) Vo — 0q, in C1P(Q) and

2 (y_x2)T D2 -
) (| Une (x=x0) T D?m(x0)(Xx—xo) —2N/2[m(xo)—9d2(Xo)]||L°o(Q) — 0.

The factor 2V/2[m(xy) — 04,(x0)] > 0 comes from

0 Uy (x) ~ e
e the integral constraint [ U,(m — U, — Vo) =

(x—x0) T D2m(x0)(x—xo) at X,
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For general m, the profile of U, in the Conjecture has been determined

inthe case N = 1.
Q = (-1,1), ¥ = {all positive local maximum points of min Q}

Theorem ([Lam and Ni (2010)])
Suppose ¥ C (—1,1) with xm'(x) < 0 at x = £1, and that all critical

points of m are non-degenerate. Let (U,, V,,) be a positive s.s. of (3).

Then as o — oo,
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For general m, the profile of U,, in the Conjecture has been determined

inthe case N = 1.
Q = (-1,1), ¥ = {all positive local maximum points of min Q}

Theorem ([Lam and Ni (2010)])
Suppose ¥ C (—1,1) with xm'(x) < 0 at x = £1, and that all critical

points of m are non-degenerate. Let (U,, V,,) be a positive s.s. of (3).

Then as o — oo,
(i) Vo = 0g,in C”B(ﬁ),
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For general m, the profile of U,, in the Conjecture has been determined
inthe case N = 1.

Q = (-1,1), ¥ = {all positive local maximum points of min Q}

Theorem ([Lam and Ni (2010)])
Suppose ¥ C (—1,1) with xm'(x) < 0 at x = £1, and that all critical
points of m are non-degenerate. Let (U,, V,,) be a positive s.s. of (3).
Then as o — oo,

(i) Vo — 0g, in C1P(Q),

(iiy forany xo € ¥ and any r > 0 small

‘ Us — max{v2(m — f,)(x), 0} ez ™ CIx—0) -0

L>(Br(x0))
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For general m, the profile of U,, in the Conjecture has been determined
inthe case N = 1.

Q = (-1,1), ¥ = {all positive local maximum points of min Q}

Theorem ([Lam and Ni (2010)])
Suppose ¥ C (—1,1) with xm'(x) < 0 at x = £1, and that all critical
points of m are non-degenerate. Let (U,, V,,) be a positive s.s. of (3).
Then as o — oo,

(i) Vo — 0g, in C1P(Q),

(iiy forany xo € ¥ and any r > 0 small

‘ Ua — max{v/2(m — 04,)(x0); 0}9ﬁm//(x(’)(x_x°)2 - 0;
L=*(Br(x0))
(iiy for any compact subset K of [-1,1]\ ¥, U,—0 inK

uniformly and exponentially.
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For general m, the profile of U,, in the Conjecture has been determined
inthe case N = 1.

Q = (-1,1), ¥ = {all positive local maximum points of min Q}

Theorem ([Lam and Ni (2010)])
Suppose ¥ C (—1,1) with xm'(x) < 0 at x = +1, and that all critical
points of m are non-degenerate. Let (U,, V,,) be a positive s.s. of (3).
Then as o — oo,

(i) Vo — 0g, in C1P(Q),

(iiy forany xo € ¥ and any r > 0 small

‘ U — max{v2(m — g, (xo), 0} ™ )0 - 0;
L=*(Br(x0))
(iiy for any compact subset K of [-1,1]\ ¥, U,—0 inK

uniformly and exponentially.

It turns out that the Conjecture needs to be modified slightly.
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Directed movements

m(x)
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Directed movements
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Directed movements

Htra pll
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Directed movements

“tra pn

v

L#
m(x)
<\<\

Fig. 7 Z

@ U will NOT survive at those local max. pts. of mwhere m < §4,!

@ i.e. local max pts. of m could be traps for U if mis less than or
equal to 04, there!
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Higher dimensional case

Recently, a new argument that works for higher dimensions is found.
Recall X = {positive local max. pts. of m(x) in Q}
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Higher dimensional case

Recently, a new argument that works for higher dimensions is found.
Recall X = {positive local max. pts. of m(x) in Q}

Theorem ([Lam (2011b)])

Assume X C Q with 9,m < 0 on 02, and that all critical points of m are
non-degenerate.

V.
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Higher dimensional case

Recently, a new argument that works for higher dimensions is found.
Recall ¥ = {positive local max. pts. of m(x) in Q}

Theorem ([Lam (2011b)])

Assume X C Q with 9,m < 0 on 02, and that all critical points of m are
non-degenerate. Moreover, assume Am(xg) > 0 whenever xg is a
saddle point of m. Let (U,, V.,) be a positive s.s. of (3).

Then as o — oo,

v
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Higher dimensional case

Recently, a new argument that works for higher dimensions is found.
Recall ¥ = {positive local max. pts. of m(x) in Q}

Theorem ([Lam (2011b)])

Assume X C Q with 9,m < 0 on 02, and that all critical points of m are
non-degenerate. Moreover, assume Am(xg) > 0 whenever xg is a
saddle point of m. Let (U,, V.,) be a positive s.s. of (3).

Then as o — oo,
(i) Vo — 0g, in C1P(Q) forany g € (0,1);
(i) forany xo € ¥ and any r > 0 small

U — max{2V/2(m — 0,)(xo), 0} e %~ 70)" Zma)lx—0)

%
L(Br(x0))

(iii) for any compact subset K of Q \ X, U, — 0 in K uniformly and
exponentially.

v
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Higher dimensional case

The proof has two main ingredients.

Wei-Ming Ni (ECNU and Minnesota)

Mathematics of Diffusion



Higher dimensional case

The proof has two main ingredients.

@ L estimate on U, independent of «.
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Higher dimensional case

The proof has two main ingredients.

@ L estimate on U, independent of «.

@ A Liouville-type theorem concerning the limiting problem near
local max of m.
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A Liouville-type theorem
Theorem (Lam)

Let B be a symmetric positive-definite N x N matrix and
0 < o € L% (RN) such that for some Ry > 0,

o2 =eV"® forally € RN\ Bg,(0),
then every nonnegative weak solution w to
(4) V-(6®Vw) =0 in RN,

is a constant.
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A Liouville-type theorem
Theorem (Lam)

Let B be a symmetric positive-definite N x N matrix and
0 < o € L% (RN) such that for some Ry > 0,

o2 =eV"® forally € RN\ Bg,(0),
then every nonnegative weak solution w to
(4) V-(6®Vw) =0 in RN,

is a constant.

@ In our original problem, at each local maximum point xp, rescale

X = Xo + /i Jay and w = e@ """y the problem
becomes

V(g4 M=m00lG ) L y(m—U- V)— =0 V(g2 Dm0l yw) = 0
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A Liouville-type theorem
Theorem (Lam)

Let B be a symmetric positive-definite N x N matrix and
0 < o € L% (RN) such that for some Ry > 0,

o2 =eV"® forally € RN\ Bg,(0),
then every nonnegative weak solution w to
(4) V-(6®Vw) =0 in RN,

is a constant.

@ No extra conditions on w is imposed except w € W,L’Cz(RN)
@ In general, some kind of asymptotic behavior is needed for this

kind of result to hold; e.g. it is proved in [Berestycki, Caffarelli and
Nirenberg (1997)] that weak solution of (4) is a constant if
an o’w? < O(R?).
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Concluding Remarks

In fact, the following more general equation is considered

Vi = hAV + V(m—U— V) inQ x (0, T),

U=V -[diVU—aUVp|+ Um—U=-V) inQx(0,T),
o,U — ald,p =0,V =0 on 9Q x (0, T).

where p(x) = x(m(x)) for some increasing function .
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Concluding Remarks

In fact, the following more general equation is considered

Vi = AV + V(m— U - V) in Q x (0, T),

U=V -[diVU—aUVp|+ Um—U=-V) inQx(0,T),
o,U — ald,p =0,V =0 on 9Q x (0, T).

where p(x) = x(m(x)) for some increasing function .

@ In particular, the different roles played by p and m are understood
more clearly.
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Concluding Remarks

In fact, the following more general equation is considered

= AV + V(m—U-V) in Q x (0, T),

U=V -[diVU—aUVp|+ Um—U=-V) inQx(0,T),
o,U — ald,p =0,V =0 on 9Q x (0, T).

where p(x) = x(m(x)) for some increasing function .

@ In particular, the different roles played by p and m are understood
more clearly.

@ Roughly speaking, p is responsible for the shape of the
concentrated peaks, while the values of m on X determines the
height of those peaks.
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Concluding Remarks

In fact, the following more general equation is considered

= AV + V(m—U-V) in Q x (0, T),

U=V -[diVU—aUVp|+ Um—U=-V) inQx(0,T),
o,U — ald,p =0,V =0 on 9Q x (0, T).

where p(x) = x(m(x)) for some increasing function .
@ In particular, the different roles played by p and m are understood
more clearly.

@ Roughly speaking, p is responsible for the shape of the
concentrated peaks, while the values of m on X determines the
height of those peaks.

@ General m?
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Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points
of m is of measure 0 ?
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Question: What if we drop the assumption that the set of critical points
of m is of measure 0 ?

=1 —0.5 0 0.5 1
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Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points
of m is of measure 0 ?

=1 —0.5 0 0.5 1

Example [Lam and Ni]: For « large, (3) has at least one stable positive
s.s. (U,, V). By passing to a subsequence if necessary, any (U,, V..)
must converge to (Up, Vp) which satisfies

U +U1-U-V)=0 in (=3, %),
dV"+V(im(x)-U-V)=0 in(-1,1
U(£3)=0,V'(£1)=0.
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Related results

@ The dynamics of the following system has been studied in [Chen,
Hambrock and Lou (2009)](m has single interior peak) and
[Bezuglyy and Lou (2009)](m has multi-peaks case).

Vi =V (bVV — BVYM)+ (m—U—- V)V inQx (0,00),

U=V-(diVU—-aUVm)+(m—-U-V)U inQx(0,c0),
dio,U — alUd,m= dx0,V — pVo,m=0 on 92 x (0, c0).

@ In particular, it is proved in some cases that U actually goes
extinct when V has a fixed large biased movement.

@ Biologically: Selection is against excessive directed-movement.
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Related results

@ In [Cantrell, Cosner and Lou (2009)], a single equation of u
incorporating biased movement and population pressure (or
self-diffusion) is considered.

u=V-[dVu—auv(m—u)]+uim—-u) inQx(0,T),
dio,u — aud,(m—u) =0 on 9Q x (0, T).
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Related results

@ In [Cantrell, Cosner and Lou (2009)], a single equation of u
incorporating biased movement and population pressure (or
self-diffusion) is considered.

u=V-[dVu—auv(m—u)]+uim—-u) inQx(0,T),
dio,u — aud,(m—u) =0 on 9Q x (0, T).

@ Apart from random diffusion, u moves up the gradient of *fitness”
(m — u), and tends to match the carrying capacity m(x) perfectly.
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Related results

@ In [Cantrell, Cosner and Lou (2009)], a single equation of u
incorporating biased movement and population pressure (or
self-diffusion) is considered.

u=V-[dVu—auv(m—u)]+uim—-u) inQx(0,T),
dio,u — aud,(m—u) =0 on 9Q x (0, T).

@ Apart from random diffusion, u moves up the gradient of *fitness”
(m — u), and tends to match the carrying capacity m(x) perfectly.

@ The dispersal term can also be written as
A(diu + au?/2) — auVm, representing a nonlinear form of
diffusion which avoids crowding.
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Related results

@ In [Cantrell, Cosner and Lou (2009)], a single equation of u
incorporating biased movement and population pressure (or
self-diffusion) is considered.

u=V-[dVu—auv(m—u)]+uim—-u) inQx(0,T),
dio,u — aud,(m—u) =0 on 9Q x (0, T).

@ Apart from random diffusion, u moves up the gradient of *fitness”
(m — u), and tends to match the carrying capacity m(x) perfectly.
@ The dispersal term can also be written as
A(diu + au?/2) — auVm, representing a nonlinear form of
diffusion which avoids crowding.

@ It is proved that the unique s.s. approaches m* as a — oo.
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Future directions

What is the best strategy for survival/competition?
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Future directions

What is the best strategy for survival/competition?

Vi =V - [bVV - BVVF(x,U, V)] + VF(x,U,V) inQx(0,T),

U=V [diVU—-aUVF(x,U, V)] + UF(x,U,V) inQx(0,T),
with no-flux boundary conditions.
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with no-flux boundary conditions.

@ U tends to optimize the fitness/available resources.
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Future directions

What is the best strateqgy for survival/competition?

Vi =V - [bVV - BVVF(x,U, V)] + VF(x,U,V) inQx(0,T),

U=V [diVU—-aUVF(x,U, V)] + UF(x,U,V) inQx(0,T),
with no-flux boundary conditions.

@ U tends to optimize the fitness/available resources.
@ Question: Will U wipe V out if « is large?
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Future directions

What is the best strateqgy for survival/competition?

Vi =V - [bVV - BVVF(x,U, V)] + VF(x,U,V) inQx(0,T),

U=V [diVU—-aUVF(x,U, V)] + UF(x,U,V) inQx(0,T),
with no-flux boundary conditions.

@ U tends to optimize the fitness/available resources.
@ Question: Will U wipe V out if « is large?
@ Cross-diffusion?
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Future directions

What is the best strateqgy for survival/competition?

U=V [d1VU - aUVF(x,U, V)] + UF(x,U,V) inQx(0,T),
{ Vi =V - [bVV - BVVF(x,U, V)] + VF(x,U,V) inQx(0,T),
with no-flux boundary conditions.
@ U tends to optimize the fitness/available resources.
@ Question: Will U wipe V out if « is large?
@ Cross-diffusion?— Yaping Wu and her group, Yotsutani and his
group
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