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Introduction: What it is all about

The focus of the talk is on the dispersal kernels.

Consider a point-source release at t = 0 a number N of
individuals of a certain species.

For any t > 0, we describe their distribution in space by the
population density u(r, t).

What is the rate of decay in the population density at large
distances, i.e. for large r = |r|?
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Left: the Gaussian (normal) distribution, right: “back-to-back
exponential” distribution.

The tails of the curves are different.

The rate of spread of invading species is higher for a fatter tail.
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Problems & questions

o What are the processes ‘behind the kernel’?

e Do fat tails always mean a non-Brownian motion of
individuals, thus making the whole diffusion framework
irrelevant?

The answer is NO.

Remark: The tail of the population density arises because
of the movement of the individuals: hence the importance
of the microscale.



Plan of the talk

e Introduction

e Part I: Fat Tails in Population Dispersal

» Dispersal kernel and its tail
» A concept of “statistically structured population”
» Fat-tailed Brownian diffusion in the structured population

e Part lI: Individual Movement and its Tails

» Steps, angles and bouts
» Peculiarities of bouts duration
» Effect of the statistical structure

e Conclusions



Part I: Dispersal in a Population



Diffusion as a paradigm

Let n(r, t) is the population density at position r = (x, y) and
time t. How will it evolve in time?

Assuming the environment is homogeneous and isotropic,

on °
ﬁ_DV n,

where D is the diffusion coefficient.

Density distribution after a point-source release at time t = 0:

N, r?
n(r,t) = 47r0Dt exp <_4Dt> ) r=1rl.




Diffusion as a paradigm ou(x,t) _ o%u(x. 1)
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The large-distance asymptotics: u(x, t) ~ exp(—Const - x?)
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Diffusion as a paradigm — a trouble

Therefore, the standard diffusion approach predicts the
Gaussian-like asymptotical rate of decay in the population
density — a ‘thin tail’:

n(r,t) ~ exp (—arz) :

The trouble is that the experimental data often show the
rate of decay at large distances remarkably lower than that
of the Gaussian tail, such as exponential:

n(r,t) ~exp(—br),
or even power law:
n(ryt) ~r7.

How can we deal with these ‘fat tails’?



An alternative, kernel-based approach

An alternative approach:

n(r,t) = . K(lr —¥|,t)n(r',0)dr’,

where the dispersal kernel K(£) gives the probability density to
find a given individual at distance ¢ from the point of its release.

With the Gaussian kernel K ~ exp[—(r — ¥')?/(4Dt)], the
kernel-based approach is equivalent to the diffusion equation.

However, the kernel must not necessarily be Gaussian.
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Statistically structured population

Observation 1: The fundamental solution of the diffusion
equation implies that dispersal can be quantified by a
single parameter D, hence assuming that all individuals
are identical in their dispersive abilities.

Observation 2: In reality, they are not identical due to
inherent statistical variations.

Consider the diffusivity distribution function ¢(D):

» dnp = Nyop(D)dD gives the fraction of the population which
diffusivity lies between D and D + dD.

> [ ¢(D)dD = 1.



Then, in the case of a point-source release,

Noo(D)dD exp < r? > '

dnp(r, 1) = = 5 ~ Dt

What is measurable in field studies is the total population
density:

% Nob(D)dD 2
n(r,t) = / dnp(r, t) = /0 "fi&exp (‘4rDt> '

One can expect that, after the integration, the large-distance
asymptotics will be different from the Gaussian one.

However, what may be the properties of ¢(D)?



Test-case Il

Let us consider

2
$(D) = Aq exp [— (D;DO) ] ., p< Dy,

where Dy and . are parameters with obvious meaning.

After integration, we obtain that, for any given t and large r,

3r4/3 ]

U(I’, t) ~ r_2/3 eXp [—W

which is clearly different from the Gaussian asymptotics,
having a fatter tail.



Test-case llla

To take into account that D is non-negative, let us consider

¢(D) = A1 D" exp [— <5)2] :

k is a parameter.

After integration, we obtain that, for any given t and large r,

3r4/3 ]

1%

Therefore, once again, the tail is fatter than the Gaussian one.



Test-case Il

Let us now consider the case when ¢(D) decays exponentially
at large D. Specifically, we consider

¢(D) = A D" exp (—S) :

v and (3 are parameters.

After integration, we obtain the large distance asymptotics:

n(r,t) ~ 5=z exp (—\/LJ ,
14

which is obviously a fat tail.



Test-case |

Let ¢(D) now show a power-law decay, ¢(D) ~ D=7 for large D.

To keep the model analytically tractable, we assume that
«
— - _
$(D) = AsD™ exp ( D) :
where « and ~ are parameters.

After integration,

2\ 7
x.)=Clav.) (a+ )
so that, for any given t and large r, we obtain a power-law:

n(x,t) ~r=27.



Comparison with field data
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(Brakefield, 1982: experiment with butterflies)



A mechanistic model for ¢(D)

Observation: Diffusivity is not a “first-hand” parameter but
rather a function of some basic parameters:

D=D(u,tr,...),
Then, even if the distribution for each of i, ¢, 7, ... is normal, the
distribution for D can be different.
A microscopic analysis of Brownian motion leads to
/2

D=~ —

E_v
27 2

Example 1: In some cases, v was shown to be described by a
Maxwell-type distribution (Okubo & Chiang, 1974).

For ¢(D) we then obtain a distribution with an exponential tail.



Example 2: However, if we assume that the step length is
fixed and 7 is distributed normally,

W) = e [— (" 5‘:")1 ,

then, since D ~ 1/7, we obtain

12 1 (P 2
¢(D) = 2 /707 D2 exp [—(57)2 <2D —7'0> ] )

so that the large-D asymptotics is a power law:

/2

$(D) ~ 2 mor 02 &P [— (;3)1 ~ D2,



Laboratory data on ¢(D)

Data on the diffusivity distribution are scarce.

Experiment with nematodes (Hapca et al., 2009):

—
)
=

probability density function

L L n il ==
0 01 02 03 04 05 06 07 08 09

¢(D) ~ D™ exp (—2), which is consistent with our analysis



Effects of finiteness

In reality, diffusivity is bounded,

0<D<D,,

where D, < oo is a parameter specific for the given species.



Effects of finiteness (contd.)

Our model predicts a critical distance, r, ~ t'/2 :

Fat tail

Thin tail

Population Density, n

Space, r I+ TImax



Part Il: Dispersal of Individuals



We assume that a curvilinear path can be mapped into a
broken line (e.g. due to discreteness of observations):

movement pattern r-5: recorded position

step length a,
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(from Jopp & Reuter, 2005)



Movement along a broken line can be quantified by distribution
of steps and turning angles but this is not enough.

Movement is usually split into periods of motion (or fast
displacement) and rest (or slow displacement):
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(from Mashanova, 2008)



Determinants of the individual path

Therefore, a complete microscopic description of the individual
movement should include distributions of steps, turning angles,
bouts and periods of rest (as well as cross-correlations
between them).

In the below, we focus on the distributions of bouts.



An Inspiring Example: Zooplankton Movement

log1q freq
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(from Bartumeus et al., 2003)



Main Assumptions

Our analysis is based on the following assumptions:

1. There exists an ideal distribution of the bout duration,
which applies to a system of absolutely identical
individuals dispersing in a homogeneous environment
under stationary deterministic conditions;

2. In a real system, the ideal distribution is masked by the
population’s heterogeneity, i.e. by the statistical variation of
individual traits.



Outline of the Theory

Let ¢(7, «) is the ideal probability distribution of bout duration.
In a population of identical individuals, « is a parameter.

Taking into account the individual differences (i.e. the statistical
structure of the population), « is not a parameter but a random
variable with a certain distribution («).

Therefore, the observed probability distribution function of bout
duration is

o) = [ otr.a)u(a)da.

We emphasize that o should be distributed over a finite domain,

0 <amin<a<amanx <.



Outline of the Theory (contd.)
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perceive a “signal” from its environment (e.g. noise, a
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arrival of these signals follows Poisson process, the waiting
times between two signals is exponentially distributed:
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Outline of the Theory (contd.)

However, what are ¢(r, «) and ¢(«)?

We postulate that an individual stops its movement when it
perceive a “signal” from its environment (e.g. noise, a
fluctuation in temperature, etc.). If we assume that the
arrival of these signals follows Poisson process, the waiting
times between two signals is exponentially distributed:

(1, a) = aexp(—ar) ,

wherea =1/ <7 >.

It can also be regarded as the Boltzmann distribution.



A glance at the data
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The frequency of the scaled bout duration in usual (left) and
semi-logarithmic (right) coordinates.



Outline of the Theory (contd.)

Remarkably, whatever ) («) is, the bouts distribution function

o(r) = / T aw(a)e " da

min

has different asymptotics for small and large 7:
for 7 < 1/amax, O(r) m<a>—-<a?>T,

for T >> 1/amln, q)(T) ~ amlnw(amln) N ; eiami’ﬂ-.



Outline of the Theory (contd.)
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Outline of the Theory (contd.)

The shape of function ¢ remains hypothetical:

Y(a) = Const

or
Y(a) = Const - a7,

or perhaps

Y(a) = Const - o7 exp (—baﬁ) :

where «, 5 and b are parameters and Const ensures that

/ Yda=1.



Comparison With Zooplankton Data
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Comparison With Zooplankton Data
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Insight into the Statistical Structure

The choice of ¢(«) is yet hypothetical.

What sort of information can we extract from detailed,
highly resolved data?

Laboratory experiment on aphids (Mashanova, 2008;
Mashanova et al., 2009)



Experiment on Aphids
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Experiment on Aphids
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Experiment on Aphids
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Data Fitting

Power law (R? = 0.881):

f(r) ~<7>7X with x =2.06;

Exponential (R? = 0.907):

f(t) ~exp(—w < 7>) with w=0.087;

Fractional exponential (R? = 0.999):

f(r) ~exp(—b < 7 >") with b=4.74 and 5 =0.21.



Probability Calculus

dr

a= " o <T>=1/a, thus () =f(r(a))| 5

<T>

Thus, for the different best fittings we obtain:

Y(a) ~ a2,

va) ~ aexp (-2,




Experiment on Aphids (contd.)
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Experiment on Aphids (contd.)
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Experiment on Aphids (contd.)
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Experiment on Aphids (contd.)
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Conclusions

e Fat dispersal tails of the population density do not
necessarily mean any kind of a “superdiffusive” movement

e Fat dispersal tails can appear as a result of random walk
(Brownian diffusion) in statistically structured population,
i.e. a population of non-identical individuals

e Our approach predicts that fat tails are an “intermediate
asymptotics.” The thin Gaussian tail should re-appear on
the spatial scales larger than a certain critical distance

e The same approach works on the “microscale” of individual
animal movement
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Thank you!



Open Questions & Future Work

e What particular processes determine the properties of the
statistical structure; in particular, how to calculate («)
theoretically?

e To include into considerations other aspects of the
individual movement (such as the distributions of steps,
turning angles etc.) in order to reveal the effect of
individual variations on these factors and on MSD

e Evolutionary aspects



