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Introduction: What it is all about

The focus of the talk is on the dispersal kernels.

Consider a point-source release at t = 0 a number N of
individuals of a certain species.

For any t > 0, we describe their distribution in space by the
population density u(r, t).

What is the rate of decay in the population density at large
distances, i.e. for large r = |r|?
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Examples

Left: the Gaussian (normal) distribution, right: “back-to-back
exponential” distribution.

The tails of the curves are different.

The rate of spread of invading species is higher for a fatter tail.



Introduction (contd.)

It has been a long story...

Skellam, J.G. (1951): Random dispersal in theoretical
populations. Biometrika 38, 196-218.

Kot, M., Lewis, M.A. & van der Driessche, P. (1996):
Dispersal data and the spread of invading organisms.
Ecology 77, 2027-2042.

Lewis, M.A. (1996): A tale of two tails: the mathematical
links between dispersal, patchiness and variability in
biological invasion. ECMTB 3, Heidelberg, 1996.



Introduction (contd.)

It has been a long story...

Skellam, J.G. (1951): Random dispersal in theoretical
populations. Biometrika 38, 196-218.

Kot, M., Lewis, M.A. & van der Driessche, P. (1996):
Dispersal data and the spread of invading organisms.
Ecology 77, 2027-2042.

Lewis, M.A. (1996): A tale of two tails: the mathematical
links between dispersal, patchiness and variability in
biological invasion. ECMTB 3, Heidelberg, 1996.



Problems & questions

• What are the processes ‘behind the kernel’?

• Do fat tails always mean a non-Brownian motion of
individuals, thus making the whole diffusion framework
irrelevant?

The answer is no.

Remark: The tail of the population density arises because
of the movement of the individuals: hence the importance
of the microscale.



Problems & questions

• What are the processes ‘behind the kernel’?

• Do fat tails always mean a non-Brownian motion of
individuals, thus making the whole diffusion framework
irrelevant?

The answer is no.

Remark: The tail of the population density arises because
of the movement of the individuals: hence the importance
of the microscale.



Problems & questions

• What are the processes ‘behind the kernel’?

• Do fat tails always mean a non-Brownian motion of
individuals, thus making the whole diffusion framework
irrelevant?

The answer is no.

Remark: The tail of the population density arises because
of the movement of the individuals: hence the importance
of the microscale.



Problems & questions

• What are the processes ‘behind the kernel’?

• Do fat tails always mean a non-Brownian motion of
individuals, thus making the whole diffusion framework
irrelevant?

The answer is no.

Remark: The tail of the population density arises because
of the movement of the individuals: hence the importance
of the microscale.
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Part I: Dispersal in a Population



Diffusion as a paradigm

Let n(r, t) is the population density at position r = (x , y) and
time t . How will it evolve in time?

Assuming the environment is homogeneous and isotropic,

∂n
∂t

= D∇2n ,

where D is the diffusion coefficient.

Density distribution after a point-source release at time t = 0:

n(r, t) =
N0

4πDt
exp

(
− r2

4Dt

)
, r = |r| .



Diffusion as a paradigm ∂u(x , t)
∂t

= D
∂2u(x , t)
∂x2 .
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The large-distance asymptotics: u(x , t) ∼ exp(−Const · x2)



Diffusion as a paradigm – a trouble

Therefore, the standard diffusion approach predicts the
Gaussian-like asymptotical rate of decay in the population
density – a ‘thin tail’:

n(r , t) ∼ exp
(
−ar2

)
.

The trouble is that the experimental data often show the
rate of decay at large distances remarkably lower than that
of the Gaussian tail, such as exponential:

n(r , t) ∼ exp (−br) ,

or even power law:

n(r , t) ∼ r−γ .

How can we deal with these ‘fat tails’?
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An alternative, kernel-based approach

An alternative approach:

n(r, t) =

∫
R2

K (|r− r′|, t)n(r′,0)dr′ ,

where the dispersal kernel K (ξ) gives the probability density to
find a given individual at distance ξ from the point of its release.

With the Gaussian kernel K ∼ exp[−(r− r′)2/(4Dt)], the
kernel-based approach is equivalent to the diffusion equation.

However, the kernel must not necessarily be Gaussian.



Statistically structured population

Observation 1: The fundamental solution of the diffusion
equation implies that dispersal can be quantified by a
single parameter D, hence assuming that all individuals
are identical in their dispersive abilities.

Observation 2: In reality, they are not identical due to
inherent statistical variations.

Consider the diffusivity distribution function φ(D):
I dnD = N0φ(D)dD gives the fraction of the population which

diffusivity lies between D and D + dD.

I
∫∞

0 φ(D)dD = 1.
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Then, in the case of a point-source release,

dnD(r , t) =
N0φ(D)dD

4πDt
exp

(
− r2

4Dt

)
.

What is measurable in field studies is the total population
density:

n(r , t) =

∫
dnD(r , t) =

∫ ∞

0

N0φ(D)dD
4πDt

exp
(
− r2

4Dt

)
.

One can expect that, after the integration, the large-distance
asymptotics will be different from the Gaussian one.

However, what may be the properties of φ(D)?



Test-case III

Let us consider

φ(D) = A1 exp

[
−

(
D − D0

µ

)2
]
, µ� D0 ,

where D0 and µ are parameters with obvious meaning.

After integration, we obtain that, for any given t and large r ,

u(r , t) ∼ r−2/3 exp

[
− 3r4/3

4(µt)2/3

]
.

which is clearly different from the Gaussian asymptotics,
having a fatter tail.



Test-case IIIa

To take into account that D is non-negative, let us consider

φ(D) = Ã1Dk exp

[
−

(
D
µ

)2
]
,

k is a parameter.

After integration, we obtain that, for any given t and large r ,

u(r , t) ∼ r2(k−1)/3 exp

[
− 3r4/3

4(µt)2/3

]
.

Therefore, once again, the tail is fatter than the Gaussian one.



Test-case II

Let us now consider the case when φ(D) decays exponentially
at large D. Specifically, we consider

φ(D) = A2Dβ exp
(
−D
ν

)
,

ν and β are parameters.

After integration, we obtain the large distance asymptotics:

n(r , t) ∼ rβ− 1
2 exp

(
− r√

νt

)
,

which is obviously a fat tail.



Test-case I

Let φ(D) now show a power-law decay, φ(D) ∼ D−γ for large D.

To keep the model analytically tractable, we assume that

φ(D) = A3D−γ exp
(
−α

D

)
,

where α and γ are parameters.

After integration,

n(x , t) = C(α, γ, t)
(
α+

r2

t

)−γ

,

so that, for any given t and large r , we obtain a power-law:

n(x , t) ∼ r−2γ .



Comparison with field data
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(Brakefield, 1982: experiment with butterflies)



A mechanistic model for φ(D)

Observation: Diffusivity is not a “first-hand” parameter but
rather a function of some basic parameters:

D = D(µ, `, τ, . . .) ,

Then, even if the distribution for each of µ, `, τ, . . . is normal, the
distribution for D can be different.

A microscopic analysis of Brownian motion leads to

D =
l2

2τ
=

v2τ

2
.

Example 1: In some cases, v was shown to be described by a
Maxwell-type distribution (Okubo & Chiang, 1974).
For φ(D) we then obtain a distribution with an exponential tail.



Example 2: However, if we assume that the step length is
fixed and τ is distributed normally,

ψ(τ) =
1√
πδτ

exp

[
−

(
τ − τ0

δτ

)2
]
,

then, since D ∼ 1/τ , we obtain

φ(D) =
l2

2
√
πδτD2 exp

[
− 1

(δτ)2

(
l2

2D
− τ0

)2]
,

so that the large-D asymptotics is a power law:

φ(D) ' l2

2
√
πδτD2 exp

[
−

( τ0

δτ

)2
]
∼ D−2 .



Laboratory data on φ(D)

Data on the diffusivity distribution are scarce.

Experiment with nematodes (Hapca et al., 2009):

pZ0.002), while in the heterogeneous environment
this tendency was less significant (�aZK0:042; �rZ0:23,
FZ4.13, d.f.Z2,15, pZ0.037).

The previous statistical analysis shows that the
individuals’ steps are correlated with both environ-
ments; however, the movement becomes less correlated
with the presence of heterogeneous structure. There-
fore, we assume that in the heterogeneous environment
the movement can be described by a first-order CRW.
It has been proved that after a sufficiently large number
of steps, the CRW converges to normal diffusion
(Tchen 1952; Bovet & Benhamou 1988; Codling &
Hill 2005), with a diffusion coefficient derived in
appendix A. The resulting distribution of the diffusion
coefficients in the heterogeneous structure is presented
in figure 4a. A Kolmogorov–Smirnov test showed a
good fit (figure 4b, pZ0.89) to this distribution by a
gamma distribution with maximum-likelihood esti-
mates nZ0.57G0.13, lZ0.21G0.07.

4. MODEL DESCRIPTION

4.1. A stochastic process in two dimensions
associated with nematode movement

Nematode movement is described in terms of a two-
dimensional stochastic process (Xt, tR0) defined on the
space U, representing the population of nematodes.
Thus, for each nematode u2U,XtðuÞZðX1

t ðuÞ;X2
t ðuÞÞ

corresponds to the position of the nematode at a certain
time tR0. We aim to determine the probability density
function (PDF), pXt

ðxÞ; x 2R2, associated with this
stochastic process that will be used to quantify
nematode dispersal.

Based on the experimental results, we assume that
the process (Xt, t2(0, T )) has stationary increments
up to a certain time, T, and that the individuals’
movement is governed by normal diffusion with a
diffusion coefficient, D, that varies among the individ-
uals. If we denote by BD

t the Brownian motion
associated with normal diffusion, then the correspond-
ing PDF is described by the Gaussian kernel

pBD
t
ðxÞZ 1

4pDt
exp K

jxj2

4Dt

� �
; tO0; x 2R2: ð4:1Þ

We develop a heterogeneous population model that
considers the contribution of each individual to the
movement of the population as a whole. The case where
D follows a discrete distribution has already been
investigated by Skalski & Gilliam (2000). When D
follows a continuous distribution with a PDF, fD on
(0,CN) the stochastic process (Xt, t2(0, T )) can be
defined by its finite-dimensional distributions as follows:

pðXt1
;Xt2

;. ;Xtn Þðx 1; x 2;.; xnÞ

Z

ðN
0
fDðsÞpðBs

t1
;Bs

t 2
;. ;Bs

tn
Þðx1; x2;.; xnÞds;

xi 2R2; i Z 1;.;n;

9>>>=
>>>;

ð4:2Þ

for any n2N � and 0% t1! t2!/! tn%T . The
finite-dimensional distributions above satisfy the
Kolmogorov’s consistency criterion and therefore
the stochastic process (Xt, t2(0, T )) is well defined
(Applebaum 2004).
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Figure 4. (a) Gamma distribution (dashed curve) with
parameters nZ0.57 and lZ0.21 fitted to the distribution of
individuals’ diffusion coefficients (solid line). (b) The corre-
sponding cumulative distribution functions used to perform
the Kolmogorov–Smirnov goodness-of-fit test. It is shown
that the gamma distribution (dashed curve) fits the data more
accurately compared to the best-fit normal distribution
(dotted curve) with parameters mZ0.118 and sZ0.187;
solid line, diffusion coefficient distribution.
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Figure 3. The distribution of the turning angle corresponding
to nematode movement in homogeneous (dotted bars) and
heterogeneous (hatched bars) environments. The error bars
represent standard errors for nZ18 and 17 in the homo-
geneous and heterogeneous environments, respectively.

Diffusion of heterogeneous populations S. Hapca et al. 115

J. R. Soc. Interface (2009)

φ(D) ∼ D−γ exp
(
−D

ν

)
, which is consistent with our analysis



Effects of finiteness

In reality, diffusivity is bounded,

0 < D < D∗ ,

where D∗ <∞ is a parameter specific for the given species.



Effects of finiteness (contd.)

Our model predicts a critical distance, r∗ ∼ t1/2 :
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Part II: Dispersal of Individuals



We assume that a curvilinear path can be mapped into a
broken line (e.g. due to discreteness of observations):

F. Jopp, H. Reuter / Ecological Modelling 186 (2005) 389–405 391

scribe the program structure and general application
possibilities of this concept in ecological modelling in
detail.

To investigate movement patterns, dispersal and re-
sponses to landscape heterogeneity we adapted the
basic concept of an individual-based model to repre-
sent the life history of ground beetles. The implemen-
tation depicts single individuals with their behaviour
relevant for dispersal. The class as a central compo-
nent of the model structure describes the character-
istics of the modelled organisms. The design of this
class corresponds to the general structure developed
in the biocoenotic modelling group in the Bornhöved
lake ecosystem research project(Breckling et al., this
volume; Fr̈anzle et al., in press.). A further class com-
pleting the generic set-up refers to the environment. It
contains e.g. information on the spatial layout (espe-
cially grid maps representing different habitat or land-
scape characteristics) or meteorological data and their
update processes.

Based on species-specific requests this generic mod-
elling framework is flexible and can be adjusted to
many ecological scenarios as demonstrated by our
models. The following description of the two models
is based on this general layout.

2.2. Movement modules

The majority of empirical data on distribution pro-
cesses of epigeic beetles is based on results from pit-
fall trap catches(Baars, 1979; den Boer et al., 1986;
Spence and Niemelä, 1994). In rare cases observations
of individuals could be used for drawing conclusions
on movement characteristics(Mascanzoni and Wallin,
1986; Wiens and Milne, 1989; Riecken and Raths,
1996; Jopp and Breckling, 2001). These investigations
have often used telemetric devices to track individuals
at fixed intervals for longer periods. Basic properties
derived from these data are the distribution of step-
length and turning angles for the measured temporal
intervals (Fig. 1). This discretisation process provides
the fundamental data and algorithms for the implemen-
tation of movement patterns in both models. The dis-
cretely modelled movement steps are thus composed
by steps with defined lengths and turning angles mea-
sured against the previous movement vector(Turchin,
1998).

Fig. 1. Discretisation of a movement pattern. The beetle’s position
is recorded at fixed time intervals, and the distance between two
positions, and the turning angle in relation to the previous direction.

The two models differ in the implementation of
these algorithms and the embedding into a com-
plex behavioural repertoire, and by the representa-
tion of the habitat quality. These additional features
result in the respective application ranges of either
model (for detailed description see Sections2.2.1 and
2.2.2).

2.2.1. Local spatial resistance and dispersal: the
Levy model

In 1957 Heydemann established the concept of local
spatial resistance (LSR) which is an important param-
eter describing how the environment influences the
movements of invertebrates. This factor is influenced
by the density of vegetation and other micro-landscape
elements, such as gravel stones or litter. It describes the
reduction of the dispersal velocity of epigeic inverte-
brates that move through an arrangement of landscape
elements(Heydemann, 1957). The role of small-scale
vegetation density and heterogeneity in determining
the movement characteristics of epigeic beetles has
been demonstrated byCrist et al. (1992)who studied
Eleodes(Coleoptera: Tenebrionidae) in a short-grass
prairie landscape. These authors describe the beetle
movements being strongly influenced by vegetation
structure, with net displacements highest on bare
ground and in different grass-cover types, and lowest
in cactus and shrub. In similar experimentsWiens and
Milne (1989)andWiens et al. (1997)found that the
distance moved per time unit was longer when beetles
moved over bare ground than among grass, which

(from Jopp & Reuter, 2005)



Movement along a broken line can be quantified by distribution
of steps and turning angles but this is not enough.

Movement is usually split into periods of motion (or fast
displacement) and rest (or slow displacement):
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Figure 5.1 a) Typical aphid tracks in a Petri dish. The thicker the line the slower an 

aphid moved. Globules show the spots where aphids stopped for some time. It can be 

seen that the paths are not homogeneous – fast movement is often interrupted by slow 

movement (or a complete stop). Most of long stops occurred at the boundary, some 

stops occurred at the paths crossing, others occurred without any obvious reason. b) An 

example of an aphid path with alternating periods of fast and slow movement. The 

horizontal line indicates the threshold we employed between movement and non-

movement. 

Model fitting 

Three models were fitted to the distribution of the moving times – the power law 

(expected for Levy walk), the exponential (expected for random walk) and the truncated 

power law – using a maximum likelihood method (e.g. Hilborn & Mangel 1997) and the 

performance of the models was compared using Akaike weights (Burnham & Anderson 

2002).  

Log-likelihood functions were derived for the range starting with xmin and going 

to infinity (assuming that values higher than the recorded ones were possible). Since the 

data were binned with 1 s bin width, the continuous distributions were converted to the 

discrete ones so that the value for the bin j was obtained by integrating over j-0.5 to 

j+0.5.  

Log-likelihood function for the power law distribution 
The pdf of the power law model is  

(from Mashanova, 2008)



Determinants of the individual path

Therefore, a complete microscopic description of the individual
movement should include distributions of steps, turning angles,
bouts and periods of rest (as well as cross-correlations
between them).

In the below, we focus on the distributions of bouts.



An Inspiring Example: Zooplankton Movement

lower was its frequency, whereas reorientation leaps due to
flagellar strokes usually caused strong cell reorientations (large
tumbling angles). Therefore, based on data (Fig. 3), we chose
100° as the cut-off angle between helical paths and reorientation
leaps. The latter govern the long-term searching walk and, thus,
can be considered as the effective tumbling angles. If effective
directions were taken entirely at random, one would expect the
mean angular deviation to be 90°. Deviations caused by active
flagellar reorientation of cells have also been observed in other
microorganisms, such as Escherichia coli, with an average (ef-
fective) tumbling angle of 103° (23).

To improve the analysis of the long-scale component (i.e., for
studying the macroscopic diffusion patterns), it might be desir-
able to subtract the helical path signal. Crenshaw and coauthors
(24) have appropriately characterized 3D helical tracks by means
of the finite-helix-fit technique. However, even with a good
description of the helical path, it is not straightforward to
subtract the helicoid from the original trajectories of a number
of individuals without significantly compromising the reliability
of the long-term walk statistics. In the future, more accurate
approaches for separating the two scale components may im-
prove the characterization and understanding of the long-term
searching behavior of microzooplankton. Nevertheless, our
method (i.e., looking at the distribution of the tumbling angles),

despite its crudeness, is sufficient to preserve the long-term
signature of the walk.

Flight-Time Intervals. A statistical quantity characterizing long-
term random walk patterns is a flight-time interval, i.e., the
period between two changes in direction (18–20). Because
changes in direction were mainly due to effective tumbling angles
(�100°), the flight-time distributions were obtained by comput-
ing the time spent between them. As resources decreased from
high to medium concentrations, we observed a change in flight-
time distributions from exponential to power law in the searching
behavior of O. marina (25). However, no substantial change
occurred in flight-time distributions between medium and low
concentrations (Fig. 4). A single value for the power-law expo-
nents of � � 2 was found in the two experiments. When we
randomly shuffled the data that gave rise to the power laws, the
long-range correlations vanished and we recovered exponential

Table 1. Monte Carlo randomization tests (n � 1,000) for mean S(f) value and mean maximum S(f) frequency changes in the HFR
periodical signal ranging from 1 to 3 Hz at different resource concentration scenarios

Resource comparison

Experiment A Experiment B Experiment A Experiment B

Mean S( f ) P Mean S( f ) P Mean maximum frequencies P Mean maximum frequencies P

High vs. low 2.68 vs. 11.48 0.000 1.59 vs. 3.55 0.000 1.69 vs. 1.96 0.004 1.87 vs. 1.91 0.562
High vs. medium 2.68 vs. 8.15 0.000 1.59 vs. 3.19 0.000 1.69 vs. 1.99 0.004 1.87 vs. 1.99 0.185
Medium vs. low 8.15 vs. 11.48 0.007 3.19 vs. 3.55 0.341 1.99 vs. 1.96 0.740 1.99 vs. 1.91 0.248

Fig. 3. Tumbling-angle histograms scaled from 0 to 180°. Ordinate is number
of observations. Asterisks in histograms mark the main discontinuity observed
(class 90–108°).

Fig. 4. Log-linear (high-resource scenario) and log–log (medium- and low-
resource scenarios) plots showing the frequency distribution of flight times at
each resource scenario in both experiments. We used bin widths of 2k for the
bin k and geometric midpoints of bins to plot the results. Straight lines show
the least-squares fitted regressions. The first point in experiment B at medium-
and low-resource scenarios was spuriously underestimated because of finite
scale effects and, thus, was not fitted.

Bartumeus et al. PNAS � October 28, 2003 � vol. 100 � no. 22 � 12773
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Main Assumptions

Our analysis is based on the following assumptions:

1. There exists an ideal distribution of the bout duration,
which applies to a system of absolutely identical
individuals dispersing in a homogeneous environment
under stationary deterministic conditions;

2. In a real system, the ideal distribution is masked by the
population’s heterogeneity, i.e. by the statistical variation of
individual traits.



Outline of the Theory

Let φ(τ, α) is the ideal probability distribution of bout duration.
In a population of identical individuals, α is a parameter.

Taking into account the individual differences (i.e. the statistical
structure of the population), α is not a parameter but a random
variable with a certain distribution ψ(α).

Therefore, the observed probability distribution function of bout
duration is

Φ(τ) =

∫ αmax

αmin

φ(τ, α)ψ(α)dα .

We emphasize that α should be distributed over a finite domain,

0 < αmin ≤ α ≤ αmax <∞ .



Outline of the Theory (contd.)

However, what are φ(τ, α) and ψ(α)?

We postulate that an individual stops its movement when it
perceive a “signal” from its environment (e.g. noise, a
fluctuation in temperature, etc.). If we assume that the
arrival of these signals follows Poisson process, the waiting
times between two signals is exponentially distributed:

φ(τ, α) = α exp(−ατ) ,

where α = 1/ < τ >.

It can also be regarded as the Boltzmann distribution.
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A glance at the data

 
 

The results in Fig. 2B justify the assumption that there exists
an ideal distribution of the bout duration, ϕ(τ,λ), given by the
exponential distribution. The parameter of this distribution, λ, is
likely to depend on properties that may affect individual motion,
e.g., body mass, leg or wing length, metabolic rate, motivational
state. If these traits vary among individuals, different individuals
will have different values of λ, and this will make the bout dis-
tribution in the population different from the ideal distribution.
In the population, λ is described by a probability distribution
ψ(λ) (Fig. 2C) rather than a single-valued parameter (16), and
the observed aggregate probability distribution function Φ(τ), of
bout duration is:

ΦðτÞ ¼
ðλmax

λmin

λ expð− λτÞψðλÞdλ; [2]

where λ is distributed over a finite, positive domain. It can be
shown that, for small bout durations, this leads to near linear be-
havior, whereas for large bout durations, we find an exponentially
decaying distribution (SI Appendix, Movement of Non-Identical
Individuals, and SI Appendix, Fig. S2). This observation explains
why power laws are ubiquitous in the movement of a population of
nonidentical individuals, as the crossover of these two asymptotic
behaviors creates the appearance of a power law with cutoff.

This also suggests a procedure to differentiate between the two
possible explanations for fat tailed distributions: either each and
every individual generates bouts from the same distribution Φ
and these bouts are uncorrelated within tracks, or each individual
generates exponentially distributed bouts, but with different
parameters for the exponential and the same aggregate distri-
bution Φ, which we assume has a truncated fat tail. To distinguish
between these two explanations, we will select the one which is
most likely, given the data (Materials and Methods). This pro-
cedure is more conservative than the methods applied earlier and
tends to be biased toward the first explanation for shorter tracks.
However, if we used the tracks with five or more bouts, this
method selected the second explanation, from which we infer that
the tracks are structured according to the Boltzmann distribution.

Discussion
Here we have provided conclusive evidence that, for a population
that has a bout distribution that is fat-tailed, an exponential,
Boltzmann-like distribution of movement bouts can describe the
movement of individual aphids. As a result of variation between
individuals, the population as a whole appears to display a non-
diffusive type of movement.
Distributions of bouts often can be described by a power law

(4) for part of the domain, but also can be fitted reasonably well
by an exponential-type distribution in other parts (10–12), sug-
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Fig. 1. Two possible explanations for fat-tailed movement data: (A) All tracks are similar in that they have bout durations drawn from the same fat-tailed
distribution (blue tracks) or (B) all tracks are diffusive and have movement lengths drawn from exponential distributions, but individuals differ in that some
move much more than others (green tracks). The difference between individuals is chosen such that the aggregated distributions of movement lengths (C) is
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scaling reveals the exponential nature of the individual bout distributions as a straight line on a semi-log plot (see Inset). The lines show a unit exponential
distribution.
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The frequency of the scaled bout duration in usual (left) and
semi-logarithmic (right) coordinates.



Outline of the Theory (contd.)

Remarkably, whatever ψ(α) is, the bouts distribution function

Φ(τ) =

∫ αmax

αmin

αψ(α)e−ατdα

has different asymptotics for small and large τ :

for τ � 1/αmax , Φ(τ) ≈ < α > − < α2 > τ ,

for τ � 1/αmin, Φ(τ) ' αminψ(αmin) · 1
τ e−αminτ .



Outline of the Theory (contd.)

The shape of function ψ remains hypothetical:

ψ(α) = Const ,

or
ψ(α) = Const · αγ ,

or perhaps

ψ(α) = Const · αγ exp
(
−bαβ

)
,

where γ, β and b are parameters and Const ensures that∫ αmax

αmin

ψdα = 1 .
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Insight into the Statistical Structure

The choice of ψ(α) is yet hypothetical.

What sort of information can we extract from detailed,
highly resolved data?

Laboratory experiment on aphids (Mashanova, 2008;
Mashanova et al., 2009)
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Data Fitting

Power law (R2 = 0.881):

f (τ) ∼< τ >−χ with χ = 2.06 ;

Exponential (R2 = 0.907):

f (τ) ∼ exp(−ω < τ >) with ω = 0.087 ;

Fractional exponential (R2 = 0.999):

f (τ) ∼ exp(−b < τ >β) with b = 4.74 and β = 0.21 .



Probability Calculus

α =
1

< τ >
or < τ >= 1/α , thus ψ(α) = f (τ(α))

∣∣∣∣ dτ
dα

∣∣∣∣ .

Thus, for the different best fittings we obtain:

ψ(α) ∼ αχ−2 ,

ψ(α) ∼ α−2 exp
(
−ω
α

)
,

ψ(α) ∼ α−2 exp
(
−bα−β

)
.



Experiment on Aphids (contd.)
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Experiment on Aphids (contd.)
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Conclusions

• Fat dispersal tails of the population density do not
necessarily mean any kind of a “superdiffusive” movement

• Fat dispersal tails can appear as a result of random walk
(Brownian diffusion) in statistically structured population,
i.e. a population of non-identical individuals

• Our approach predicts that fat tails are an “intermediate
asymptotics.” The thin Gaussian tail should re-appear on
the spatial scales larger than a certain critical distance

• The same approach works on the “microscale” of individual
animal movement
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Thank you!



Open Questions & Future Work

• What particular processes determine the properties of the
statistical structure; in particular, how to calculate ψ(α)
theoretically?

• To include into considerations other aspects of the
individual movement (such as the distributions of steps,
turning angles etc.) in order to reveal the effect of
individual variations on these factors and on MSD

• Evolutionary aspects


