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Bacteriophage and Plaques

Bacteriophage

Bacteriophage, phage for short, are virus that parasitize bacteria

1 most numerous life form on the planet
2 found in all reservoirs populated by bacterial hosts, such as soil, water, or

the intestines of animals
3 possible therapy against multi drug resistant strains of many bacteria
4 played key role in showing DNA is carrier of hereditary information
5 model host-parasite system for evolution studies
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Bacteriophage and Plaques

Phage Life Cycle: adsorption to lysis

Latent Period: time from adsorption to burst ≈ 20 − 40 min.
Burst size: 10-1000 virus.
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Bacteriophage and Plaques

Plaque Assay

“The plaque technique of virus assay has played an important role in the development
of knowledge of the physiology and genetics of viruses. For bacteriophage the
technique is quite simple and consists of adding a large number of susceptible
bacteria and a few virus particles to a tube containing melted nutrient agar, which is
then poured on a Petri plate that already contains a basal layer of nutrient agar. The
virus adsorbs to the host bacteria, multiplies, and lyses the bacterial cell; the progeny
viruses diffuse to neighboring bacterial cells and multiply further, yielding holes or
plaques in the otherwise continuous sheet of bacterial growth." (A.L. Koch: JTB 1964)
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Prior work on Plaque spread Koch’s formula

Koch: JTB 1964

Using time scale arguments and well-known characteristics of the heat
equation, Koch proposes that

speed of plaque spread ∝

(

virus diffusion constant (d)
latent period (τ )

)1/2

For an E. Coli strain and T7 phage, d = 4× 10−8cm2/sec and τ = 20 min., so
Koch’s formula gives speed = 0.2mm/hr .
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Prior work on Plaque spread Model of Yin & McCaskill

Yin & McCaskill (1992) BioPhysics J.

exponentially distributed latent period, adsorption/desorption:
V = virus, B = susceptible bacteria, I = infected bacteria.

V + B
k+

⇄
k−

I
k2−→ βV , β = burst size

Model equations:

Vt = d(Vrr +
1
r

Vr ) − k+VB + (k2β + k−)I

Bt = −k+BV + k−I,

It = k+BV − (k− + k2)I

in the entire plane R
2 with initial conditions:

V =

(

V0, r ≤ r0

0, r > r0

)

, B =

(

0, r ≤ r0

B0, r > r0

)

, I = 0
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Prior work on Plaque spread Model of Yin & McCaskill

Yin et al.

Yin & McCaskill linearize the equations about the virus-free state:

(V , B, I) = (0, B0, 0)

and seek the form of the “leading edge" of a 1D-traveling wave as

(V , B, I) = e−λ(x−ct)(a1, a2, a3), a1, a3 > 0

Substituting this into the linearized equation, they obtain cubic equation for the
“shape parameter" λ, with coefficients depending on c. The minimum value
that c can take is identified as a solution of an associated cubic equation.

Yin and You (J.Theor.Biol.1999) use numerical simulations to support the
claim that a wave develops and spreads.

Problems:
(1) their estimated wave speed greatly exceeds experimental values!
(2) 63% of infected cells lyse before the average for the exponential
distribution.
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Fixed-Duration Latent Period Model

Our Model: V + B k
−→ I → βV , τ = |latent period|

An infected cell remains so for τ time units, then lyses, releasing β phage.

First latent period: 0 ≤ t ≤ τ

Vt = d△V − kVB

Bt = −kBV , x ∈ D

It = kBV

with initial data: V (0, x) = V0(x), B(0, x) = B0(x), I(0, x) = 0.
For t > τ :

Vt = d△V − kV (t, x)B(t, x) + βkB(t − τ, x)V (t − τ, x)

Bt = −kB(t, x)V (t, x)

It = kB(t, x)V (t, x) − kB(t − τ, x)V (t − τ, x)

I(t, x) = B(max{0, t − τ}, x) − B(t, x), B(t, x) = B0(x) exp(−k
∫ t

0 V (s, x)ds)

In the lab, D is disk in R
2 (No-Flux B.C.), V0 =

∑

i δxi , B0 is a pos. const.
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Fixed-Duration Latent Period Model

Asymptotic Behavior in a Bounded Domain

Let D be a bounded domain in R
n. If V satisfies Neumann B.C., then

v(t) =

∫

D
V (t, x)dx , b(t) =

∫

D
B(t, x)dx

have limits as t → ∞:

b(∞) = 0

v(∞) = v(0) + (β − 1)b(0)

provided β > 1 and V0(x) is not identically zero.

All the bacteria are converted into virus.
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Fixed-Duration Latent Period Model

Simulations: β = 100, kB0τ = 1

0

5

10

15

20

0
100

200
300

400
0

0.5

1

1.5

Spreading Phage Plaque. V (t, x)/B0(β − 1) is plotted.

Jones, Rost, Thieme, Smith (A.S.U.) Spread of Viral Plaques July 6, 2011, Banff 11 / 25



Fixed-Duration Latent Period Model

Simulations
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Traveling Waves in One Space Dimension-a failed attempt

Traveling Waves

Seek a traveling wave solution in one space dimension (x ∈ R
1):

V (t, x) = V (s), B(t, x) = B(s), s = x + ct

where c > 0 denotes the wave speed. This leads to a system of delay
equations:

cV ′(s) = dV ′′(s) − kB(s)V (s) + βkB(s − cτ)V (s − cτ)

cB′(s) = −kB(s)V (s)

we seek a wave satisfying

(V (−∞), B(−∞)) = (0, B0), (V (+∞), B(+∞)) = (V0, 0), B0, V0 > 0.

The second equation may be used to rewrite the first as:

cV ′(s) = dV ′′(s) + cB′(s) − cβB′(s − cτ)

Integrating over the real line gives

V0 = (β − 1)B0

β > 1 is a necessary condition for the existence of a wave.
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Traveling Waves in One Space Dimension-a failed attempt

Heteroclinic Orbit for DDE

After scaling space, time, and dependent variables, the system of delay
equations is obtained for the wave profile:

(1/c2)v ′(s) = v(s) +
1

β − 1
(1 − b(s)) −

β

β − 1
(1 − b(s − 1))

b′(s) = −k(β − 1)b(s)v(s)

It has equilibria:

E− ≡ (v , b) = (0, 1) and (v , b) = (1, 0) ≡ E+

We seek a heteroclinic orbit issuing from E− and joining to E+.

Jones, Rost, Thieme, Smith (A.S.U.) Spread of Viral Plaques July 6, 2011, Banff 14 / 25



Traveling Waves in One Space Dimension-a failed attempt

Traveling Wave Conjecture

Necessary condition for non-oscillatory heteroclinic orbit:
(a) E+ has a negative characteristic exponent. X

(b) E− has a positive characteristic exponent.
Characteristic equation at E−: 0 = λ2

c2 − λ + k(βe−λ − 1)
has a pair of positive roots for all large values of c, say, c > c∗.
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Conjecture: There is a heteroclinic orbit whenever c > c∗.
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Asymptotic Spreading Speed Theory applied to a related scalar equation

Spreading Speed Theory of Thieme & Zhao (2003)

Let u(t, x) =

(
∫ t

0 V (s, x)ds, t > 0, x ∈ R
n

0, t ≤ 0, x ∈ R
n

)

, B(t, x) = B(0, x)e−ku(t,x).

u(t, x) satisfies:

ut (t, x) = d∆u(t, x) + V0(x) − B0(x)kf (u(t, x)) + βB0(x)kf (u(t − τ, x)),

where f (u) = (1 − e−ku)/k .
Hereafter, B(0, x) ≡ B0 > 0. Rewrite eqn. as

ut (t, x) = d∆u(t, x) + V0(x) − B0ku(t, x) + B0kg(u(t, x)) + βB0kf (u(t − τ, x))

Both f (u) ≥ 0 and g(u) = u − f (u) ≥ 0 are increasing functions!
By comparison theorem, u(t, x) ≥ v(t, x) where:

vt (t, x) = d∆v(t, x) + V0(x) − B0kv(t, x) + βB0kf (v(t − τ, x))

As f (u) ≤ f ′(0)u, spreading speed theory of Thieme & Zhao applies!.
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Asymptotic Spreading Speed Theory applied to a related scalar equation

The Characteristic Equation

Setting V0 = 0 and Linearizing

vt(t, x) = d∆v(t, x) − B0kv(t, x) + βB0kf (v(t − τ, x))

about v = 0, using f (v) = v + O(v2):

vt(t, x) = d∆v(t, x) − B0kv(t, x) + βB0kv(t − τ, x)

Trying for a traveling wave solution with exponential profile:

v(t, x) = eλ(ct+x·z), z ∈ R
n, |z| = 1,

leads to the an equation for the “shape parameter" λ and wave speed c:

F (λ, c) ≡ dλ2 − λc − kB0 + βkB0e−λcτ = 0

This equation is identical, up to scaling, as the previous one!
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Asymptotic Spreading Speed Theory applied to a related scalar equation

Lower Bound on Speed of Spread

Let (λ∗, c∗) be the unique solution of

F (λ, c) = Fλ(λ, c) = 0

Now apply result of Thieme (1979):

Theorem: Let β > 1 and let v∗ be the unique positive solution of

v∗ = βf (v∗) = β(1 − e−kv∗

)/k

Then, for every c ∈ (0, c∗),

lim inf
t→∞

inf
|x|≤ct

v(t, x) ≥ v∗

provided V0 is measurable, nonnegative, and not zero a.e.

Because u(t, x) ≥ v(t, x), and one can argue that for every c ∈ (0, c∗),

inf
|x|≤ct

u(t, x) → ∞, t → ∞,
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Asymptotic Spreading Speed Theory applied to a related scalar equation

Spreading speed

Having shown that for every c ∈ (0, c∗),

inf
|x|≤ct

u(t, x) → ∞, t → ∞,

we now seek to show that for every c > c∗

sup
|x|≥ct

u(t, x) → 0, t → ∞,

If this holds for all suitably restricted solutions of our equation,
then “c∗ is THE spreading speed" for the equation.
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Asymptotic Spreading Speed Theory applied to a related scalar equation

Estimates of u(t , x) from above

Comparison arguments and concavity of f (u) show that if V0 has compact
support, then ∃η > 0 such that ∀z ∈ R

n, |z| = 1:

u(t, x) ≤ ηeλ(ct+x·z), x ∈ R
n, t ≥ 0

In particular, taking z = −x/|x |,

u(t, x) ≤ ηeλ(ct−|x|)

provided either:
1 βe−2λ∗c∗τ ≥ 1, c > c∗, λ < λ∗, and cλ = c∗λ∗. Therefore

lim
t→∞

sup
|x|≥ct

u(t, x) → 0, c > c∗

2 c > co, λ < λ∗, and cλ = coλ∗ where (λ∗, co) is the unique double root of
F (λ, c) + kB0 = 0. Therefore

lim
t→∞

sup
|x|≥ct

u(t, x) → 0, c > co

Note: c0 > c∗.
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Asymptotic Spreading Speed Theory applied to a related scalar equation

Spread Results for B − V System

Using that I(t, x) = B(t − τ, x) − B(t, x), t > τ and B(t, x) = B0e−ku(t,x), t > 0
and the previous results, we have the following result.

Theorem: Let (V , B) be a solution with initial data V (0, x) = V0(x) ≥ 0, and
B(0, ·) ≡ B0 > 0 where V0(x) is not zero a.e. Then, for every c ∈ (0, c∗),

lim
t→∞,|x|≤ct

B(t, x) = 0, lim
t→∞,|x|≤ct

I(t, x) = 0.

In addition, assume that V0 has compact support and one of the following
hold:

(1) c > c∗, and βe−2λ∗c∗τ ≥ 1, or

(2) c > c0

Then,
lim

t→∞,|x|≥ct
B(t, x) = B0, lim

t→∞,|x|≥ct
I(t, x) = 0.
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Asymptotic Spreading Speed Theory applied to a related scalar equation

Theoretical vs Simulated Spread Speed

0 1 2 3 4 5
K

2

3

4

5

6

7

C

Tube
Disk

C
*

C
O

scaled c∗ vs K = kB0τ in black

c∗ =
√

d ln(β)
τ , kB0τ = 1

Jones, Rost, Thieme, Smith (A.S.U.) Spread of Viral Plaques July 6, 2011, Banff 22 / 25



Asymptotic Spreading Speed Theory applied to a related scalar equation

Theoretical vs Simulated Spread Speed

0 1 2 3 4 5
K

2

3

4

5

6

7

C

Tube
Disk

C
*

C
O

scaled c∗ vs K = kB0τ in black

c∗ =
√

d ln(β)
τ , kB0τ = 1

Jones, Rost, Thieme, Smith (A.S.U.) Spread of Viral Plaques July 6, 2011, Banff 22 / 25



Traveling Waves Solutions

Existence of Traveling Wave Solutions: x ∈ R

Theorem: Assume one of the following hold:

(1) c > c∗ and βe−2λ∗c∗τ ≥ 1, or

(2) c > co.

Then there exists a traveling wave solution V (x + ct) > 0 and B(x + ct) > 0 of

Vt = dVxx − kVB + βkB(t − τ, x)V (t − τ, x)

Bt = −kBV

satisfying:

B(−∞) = B0, B(+∞) = 0, V (−∞) = 0, V (+∞) = B0(β − 1).
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Traveling Waves Solutions

Proof Ideas

Adapt approach of Diekmann 1977, as in Thieme & Zhao:
Start by finding wave solution u = U(ct + x) for:

ut = duxx − B0ku + B0kg(u(t, x)) + βB0kf (u(t − τ, x))

with U(s) monotone increasing, U(−∞) = 0 and U(+∞) = +∞.
U must be a fixed point of (µ = kB0, ν = βµ)

U(ξ) =

∫ ∞

0

∫

R

e−µsΓ(s, y)µg(U(ξ − cs − y))dyds

+

∫ ∞

0

∫

R

e−µsΓ(s, y)νf (U(ξ − c(s + τ) − y))dyds = F (U)(ξ).

F : M(R, R+) → M(R, R+) is monotone. Now find an upper solution
W ≥ F (W ) and a lower solution F (w) ≥ w with 0 < w < W . Then

W ≥ F (W ) ≥ F 2(W ) ≥ · · · ≥ F k (W ) → U ≥ w
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Traveling Waves Solutions

The End

Thanks For Your Attention
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