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Coupled System

f , g : IRn → IRn

P ,Q positive diagonal matrices

v̇ = f (v)− Pv + Qw

ẇ = g(w) + Pv − Qw

diffusive coupling



Quiescent Phase

g ≡ 0

Compare the behavior of

u̇ = f (u) “small”

to the behavior of

v̇ = f (v)− Pv + Qw

ẇ = Pv − Qw “large”



Equal rates

P = pI , Q = qI

n = 1: Global existence of the small system implies
global existence of the large system.
Compact global attractor of the small system
implies compact global attractor of the large system.

n ≥ 1: Similar results under the assumption that
infinity is uniformly repelling.



Stationary points

Stationary points are “the same”:
ū stationary point of the small system
⇒ (ū,Q−1Pū) stationary point of the large system.

Jacobian matrix A = f ′(ū)

B =

(
A− P Q
P −Q

)
Equal rates: Stability of the small system
⇒ stability of the large system

General case: A Turing phenomenon!



Turing phenomenon

ut = Duxx + Au

A is called stable if all eigenvalues have negative
real parts.
A is called strongly stable if for any nonnegative
diagonal matrix D the matrix A− D is stable.
A is called excitable if A is stable but not strongly
stable.



Activator - inhibitor dynamics

n = 2

A =

(
a11 a12
a21 a22

)
A stable: detA > 0, trA < 0
A strongly stable: A stable and a11 ≤ 0, a22 ≤ 0
A excitable: A stable and a11 > 0

Furtheron assume that A is stable!



Turing versus quiescence

n = 2

Turing phenomenon: A real eigenvalue of A− D
passes through zero.

Quiescence: 0 is never an eigenvalue of B .
A complex-conjugate pair of eigenvalues of B passes
through the imaginary axis.



For n = 2 the following are equivalent:

0) The matrix A is excitable.
i) For some D the matrix A− D has an eigenvalue
with positive real part.
ii) For some P ,Q the matrix B is not stable.
iii) For some P ,Q the matrix B has a real positive
eigenvalue.
iv) For some P ,Q the matrix B has a pair of purely
imaginary eigenvalues.



Results for n ≥ 2:

For some D the matrix A− D has an eigenvalue
with positive real part.
⇒ For some P ,Q the matrix B has an eigenvalue
with positive real part.
⇒ For some P ,Q the matrix B has a pair of purely
imaginary eigenvalues.

For some P ,Q the matrix B has a real positive
eigenvalue.
⇔ For some D the matrix A− D has a real positive
eigenvalue.



Biological message

Distinct rates may lead to Hopf bifurcations.

For example, if inhibitor goes quiescent at a high
rate.



Equal rates: Quiescence stabilizes

B =

(
A− pI qI
pI −qI

)
Spectral mapping theorem applies:
µ eigenvalue of A, λ1, λ2 eigenvalues of B

λ2 + λ(p + q − µ)− µq = 0

<λ2 < 0



Stability domain

{µ = α + iβ : <λ1 < 0}

The stability domain, depending on p and q, is
larger than the left half plane.
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Figure: Stability boundary: The value of p = 1 is fixed, and τ = 1/q.
When pτ > 8 then the curve is not monotone.



Periodic orbits

Observation: Periodic orbits shrink, i.e.,
the non-quiescent projection shrinks.

Has been proved for a model problem.



Predator-prey system

MacArthur-Rosenzweig

u̇ = au(1− u

K
)− b

uv

1 +mu

v̇ = c

(
u

1 +mu
− B

1 +mB

)
v

Paradox of enrichment



with quiescence, general rates

u̇ = au(1− u

K
)− b

uv

1 +mu
− p1u + q1w

v̇ = c

(
u

1 +mu
− B

1 +mB

)
v − p2v + q2z

ẇ = p1u − q1w

ż = p2v − q2z



Coexistence equilibrium

a22 = 0, hence a11 = trA

If the matrix is stable then it is not excitable.

Stability of the 4-dimensional system can be
described in terms of detA and trA.
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Figure: The τ, δ-plane with the null sets of the Hurwitz determinants.
Quiescence leads to an enlarged stability domain. The domain gets larger
when p1, p2 are increased.
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Figure: Phase plane for the MacArthur-Rosenzweig system (solid) and
projection to the u, v -plane for the system with quiescence (dashed).
Both systems have limit cycles. The projected limit cycle of the quiescent
system is much smaller.



QUESTION

In the diffusive coupling model the sojourn times in
the active and in the quiescent compartments are
exponentially distributed.

What happens if we replace the exponential
distributions by some other distributions?



The two-phase model

Coupling with arbitrary sojourn distributions

vt + va + p(a)v = m(a)F (t)

wt + wb + q(b)w = n(b)G (t)

v(t, 0) =

∫ ∞

0

q(b)w(t, b)db + f (t)

w(t, 0) =

∫ ∞

0

p(a)v(t, a)da + g(t)

v(0, a) = v0(a), w(0, b) = w0(b)



Projection variables

recruitment rates

M(t) = v(t, 0), N(t) = w(t, 0)

total population sizes

V (t) =

∫ ∞

0

v(t, a)da, W (t) =

∫ ∞

0

w(t, b)db



Limiting system

M ,N ,V ,W satisfy limiting equations

M(t) =

∫ ∞

0

e−
∫ b

0
q(σ)dσq(b)N(t − b)db

+

∫ ∞

0

∫ b

0

e−
∫ b

s
q(σ)dσq(b)n(s)G (t−b+s)dsdb + f (t)

N(t) =

∫ ∞

0

e−
∫ a

0
p(σ)dσp(a)M(t − a)da

+

∫ ∞

0

∫ a

0

e−
∫ a

s
p(σ)dσp(a)m(s)F (t−a+s)dsda + g(t)



The functions V ,W satisfy

V̇ (t) = M(t)− N(t) + F (t) + g(t)

Ẇ (t) = N(t)−M(t) + G (t) + f (t)



Exponential distributions (Poisson case)

There is a limiting system for V ,W that is
independent of the functions M ,N :

V̇ = −pV + qW + F (t) + f (t)

Ẇ = −qW + pV + G (t) + g(t)



Semi-Poisson case with quiescence

Particles enter w phase with rate p and leave it with
rate q(b). No production during w phase:

vt + va + pv = m(a)F (t)

v(t, 0) =

∫ ∞

0

q(b)w(t, b)db + f (t)

wt + wb + q(b)w = 0

w(t, 0) = p

∫ ∞

0

v(t, a)da + g(t)

.



Scalar limiting equation

V̇ (t) = p

[∫ ∞

0

L(b)V (t − b)db − V (t)

]
+

∫ ∞

0

L(b)g(t − b)db + F (t) + f (t)



Autonomous system

Delay equation

V̇ (t) = p

[∫ ∞

0

L(b)V (t − b)db − V (t)

]
+ f (V (t))

Exponential distribution:

V̇ (t) = p

[∫ ∞

0

qe−qbV (t − b)db − V (t)

]
+f (V (t))

equivalent with diffusive coupling system



Dirac distribution

Transition from v to w at constant rate p,
transition from w to v with fixed exit time τ > 0

V satisfies the delay equation

V̇ (t) = p[V (t − τ)− V (t)] + f (V (t))



Dynamical system (semi-Poisson case)

vector valued case

V̇ (t) = p

[∫ ∞

0

L(b)V (t − b)db − V (t)

]
+ f (V (t))

Integral operator acts component wise.

Linearize at stationary point

U̇(t) = p

[∫ ∞

0

L(b)U(t − b)db − U(t)

]
+ AU(t)



Stability analysis

Ask for exponential solutions

AŪ = λŪ − p

[∫ ∞

0

L(b)e−λbdb − 1

]
Ū

Spectral mapping property: µ an eigenvalue of the
matrix A, λ a root of the equation

λ− p

[∫ ∞

0

L(b)e−λbdb − 1

]
= µ



Preservation of stability

µ = α + iβ eigenvalue of A
λ = ξ + iη an eigenvalue corresponding to the delay
equation
Relations between the real parts of the eigenvalues:

1. α ≥ 0 ⇒ ξ ≤ α

2. α ≤ 0 ⇒ ξ ≤ 0

3. η = 0 ⇒ β = 0



Gamma distribution as an example

Standard notation

1

Γ(k)θk
xk−1e−x/θ

k > 0 shape parameter
θ > 0 scale parameter



Interpolating notation

L(b) = L(b;κ, n) =
κn(κnb)n−1

Γ(n)
e−κnb,

mean τ = 1/κ
shape parameter n

n = 1: exponential distribution
n → ∞: Dirac distribution at τ = 1/κ
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Figure: The stability boundary for the case of a delay τ . The value p = 1
is fixed; the value for τ varies: τ = 0.5, τ = 1, τ = 2.5, τ = 5.5.



Keeping the mean constant
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Figure: The stability boundary for the case τ = q = p = 1 for different
values of n.



Quasimonotone behavior

Scalar equation

Appropriate assumptions on the kernel

Assume two solutions u, v exist in (−infty ,T ], with
T > 0, and u(s) ≤ v(s) for s ≤ 0.
Then u(t) ≤ v(t) for 0 ≤ t ≤ T .



Proposition: Assume that the ordinary differential
equation V̇ = f (V ) has a compact global attractor
[c , d ]. Then every limit element of the delay
equation satisfies c ≤ V (t) ≤ d .



Fisher equation with quiescence

(Lewis & Schmitz, KPH & Lewis, Zhao)
Standard reaction diffusion with quiescent
compartment

vt = Dvxx + f (v)− pv + qw

wt = pv − qw

Splitting of reaction and diffusion

vt = Dvxx − µv − pv + qw

wt = f (w) + pv − qw

speeds of fronts and spread numbers



General case

ut = p(L ∗ u − u) + f (u) + Duxx

[L ∗ u](t, x) =
∫ ∞

0

L(b)u(t − b, x)db

Dirac case (a delayed Fisher equation)

ut(t, x) = pu(t−τ, x)−pu(t, x)+f (u(t, x))+Duxx(t, x)

Individuals stay quiescent for a time interval of
exact length τ .



Formal treatment

Assumptions on f : f (0) = f (1) = 0,
f ′(0) > 0 > f ′(1), f (u) > 0 for 0 < u < 1,
f (u) ≤ f ′(0)u.
Traveling fronts with u = 0 at the leading edge.

Cooperative system. Theory of Lewis-Li-Weinberger
for ordinary differential equations.



Similarity solution u(t, x) = u(x − ct) = u(ξ),

−cu̇(ξ) = pL∗u(ξ− c ·)−pu(ξ)+ f (u(ξ))+Dü(ξ).

Linearize at u = 0 and put f ′(0) = a > 0,

−cu̇(ξ) = pL ∗ u(ξ − c ·)− pu(ξ) + au(ξ) + Dü(ξ).

At the leading edge: exponential decay with
exponent ν > 0.



Set u(ξ) = exp{−νξ} and get the characteristic
equation

φ(ν, c) ≡ cν + p(1− E (cν))− Dν2 − a = 0,

where

E (z) =

∫ ∞

0

L(b)e−zbdb



The minimum

Suppose the function E (z) ≥ 0 satisfies E (0) = 1,
E ′(z) < 0, E ′′(z) > 0, and zE (z) ≤ E ∗ for all
z ≥ 0.
Then the characteristic equation defines a positive
function c = c(ν), for ν ∈ (0,∞), that has a
unique point ν where c ′(ν) = 0. At this point is
the minimum of the function c(ν).
This minimum is (should be) the spread number.



Expansion

f ′(0) = a

c = 2
√
Da

(
1− p

1− E (2a)

2a

)
+ o(p).

Gamma distribution: E (z) is the moment
generating function of L evaluated at −z , i.e.

E (νc) =
(
1 +

νc

κn

)−n

.
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Figure: The speed of propagation as a function of the shape parameter n
of the Gamma distribution is decreasing.


