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Broad overview

Aspects of stochasticity at a single location (with Brett
Melbourne)

Stochastic spatial spread (with Brett Melbourne)

Control of invasive species (with Caz Taylor, Richard
Hall, Julie Blackwood, Chris Costello, Rebecca

Epanchin-Niell plus others for experimental/field
aspects)



New stochastic Ricker models:
extinction risk could be higher

Brett Melbourne

University of Colorado
Boulder

Alan Hastings
University of California Davis



*
random births & deaths: within-individual scale

*

random births & deaths: population scale

vital rates (birth/death): between-individual scale

random: male or female?




Random search
Bernoulli:

p=1_g ™M Bernoulli:

p=m
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Ricker (1954) Cannibalism
. . & mortality
Fisheries model
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S, ~ Poi(R e‘“Nt)

Sum up survivors over all adults R=4(1-m)

N, ' g
= ZSi & Poi(NtR e"“Nt) Poisson Ricker

(sum of Poissons is Poisson)

Model for demographic stochasticity
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Random search

Bernoulli:
Ervi . p=1-g2% Beriloulli:
nvironment 2 \ / p=m

Gamma: f.. - X

B ‘/\2|§ /_\/ji — q |/ — Vi
5 Surviving

Births (fish i) ° ;
t ~
Poisson: fit : > offspring
Cannibalism
& mortality

Demographic Environmental Demographic

7 1S i Model
stochasticity  stochasticity =~ heterogeneity

Poisson

® Neg bin-environmental
Neg bin-demographic
Neg bin-gamma

Poisson-binomial

Neg bin-binomial-demographic

[ ) Neg bin-binomial-environmental

Neg bin-binomial-gamma

All models have mean: N, , = N,Re ™




Demographic =~ Environmental Demographic Env stoch +
stochasticity stochasticity =~ heterogeneity Dem het




stochasticity

em stochasticity

bchasticity
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Mean time to extinction (7))

Demographic stochasticity

y
00 NBe P |
0 mELOSE S
Env + Dem stochasticity
O -
& De%eterogeneity + Dem]gtochasticity
0

Much higher
extinction risk
for same Var(N,,,)

: e 15 20
Finite rate of growth (R)
e IR R S [ S o o T . T Dot

-':h':"f-"':d:-T.:_"ﬁ-:-'l': 8 ;.'

P sapane !

B A



F.
Demographic stochasticity
y
665000 NBe P |
'.l.] 2 0 g O St
v — Env + Dem stochasticity
- T) BE 8-490 o
- S o & De%eterogenelty + Dem|gtochasticity
S e
oy H
3] LCI) 1,300 )
= 3= Much higher
= s 4 . . .
%] ) extinction risk
P o
g 3 o 1 for same Var(N,,,)
" B E
3 i= E 5
, e =
o] 2
<)
=
. 2 T T T T I T T T T I T T T T I T T T T I
5 10 15 20
54 Finite rate of growth (R)
3 B - o e ﬁﬂm?"-‘ - Ll d .." b e NN T s miE TP _-'Tlﬂ‘fm#l'i e -,-T*-'r‘—-.---?,.__ T .- _, _'v silatis

-':h':"f-"':d:-T.:_"ﬁ-:-'l': 8 ;.'

P sapane !









§ AT S & B .
L1t 1imao tmnndAdaolo o
A‘ Y ! |
LLI]& Oc1el (
4 G W - P Sy . 1 A A WA - g e 4
{

Likelihoods:

PI‘(NH =Ny |0, N, = nt):

1
4

£
®© b (e oyneF[ Mgt Fk, -1 A 4 Fk, i‘
G(RE);)(FJZ L) [ Bl j(FkD mj (FkD +2) 8

; Sl i
O(Re)=Re el f* iy 2=F e
E




o, A

o o

¥
L

Swfgpen L

o

r J
&
.-

L
)
[
b
2
L







Demographic Environmental
heterogeneity stochasticity

N £
Y K
Model R kD kE

AAIC
336

Poisson (dem stoch)
Negative binomial (dem het) 18

Negative binomial (env stoch)

Poisson-binomial (sex)
NB-binomial (dem het)
NB-binomial (env stoch) . 13.1

NB-binomial-gamma (all) : . 1.15 26.6

Negative binomial-gamma ; . frky,

‘Small k value
= big variance

s C .‘-".','_:l-‘.ﬁ:l;ﬂ'.r;":ﬁi“’:-nr.



Conclusion

Many species could be at much higher risk than we
thought!

... because simpler models can wrongly conclude that
environmental stochasticity dominates, whereas
demographic variance has higher extinction risk (for
the same variance in abundance)

Important to include all stochasticity



Melbourne B. A. & Hastings A. (2008).

Extinction risk depends strongly on factors contributing to
stochasticity.

Nature 454: 100-103.
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Stochastic spread

Stochasticity (— variance in speed)
Population growth & dispersal
Demographic, environmental, genetic

Repeat an invasion: different
Nature: one realization

Real invasions can't be repeated
Many times, identical conditions
Laboratory microcosms
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Experiment
* 30 landscapes

¢ Constant
environment

* 13 generations
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Spatioe-
temporal
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Mechanistic stochastic models

Individual based derivation
Predict mean, variance, & prob dist

N (t+1) = growth + migration







Growth (birth, surv) in a patch

Survive cannibalism & DI mortality

Random P, = (1_ m)e‘“'\'x(t) Bernoulli
search ./ :
—_— — e S ~ Poi(Re M)
Adult i ¥ 5
g R=p(1-m)
egos; ~ Poi(p5)
Patch scale:

N ; (t 1 1) — I\g)si ~ Em(blbx éﬁ)ﬂ\&)‘t@“@%} dRcidsitts Ricker




Stochastic Ricker models

Model Dem stoch | Sex | Env | Dem
(Birth, Surv) stoch | het

Poisson

Neg bin

Neg bin (Density Dep.)

Neg bin-gamma

Poisson-binomial

Neg bin-binomial

Neg bin-binomial (DD)

Neg bin-binomial-gamma




Stochastic spatial model

Patch scale growth

*ﬁi

N, (t)

L

Number surviving is

/ a random variable:

stochastic Ricker

N, (t+h) ~ Poi(N, (t)Re™™")



Stochastic spatial model

Migration from patch y to x

PN, (R 0)

S

L iii * x

N N h) = PoilN, (DR e )

M., ~ Poil

y—>X




Stochastic spatial model

Landscape scale

[(t+1)= ZM = Poi(%:m
y

contributi
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etRe J
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Yy—>X

N, (©)

i Poi(

Py-x

N, (t)R e‘O’Ny(t))

o

Other Ricker
models work
the same way
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p, .. (individuals)

o

Poisson diffusion
individuals have same D

Poisson-gamma diffusion
individuals have different D
longer tail



Vari ance Experiment landscapes
I Spread
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Varian ce Colors: Stochastic model
In spread |
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Experiment landscapes

20

Stochastic
model

15

Distance spread

Dem stoch
Sex

Env stoch
Dem het
Pois diffusion

Generation




Founder effects?

Landscapes started
with 20 individuals

Stochastic spatial model fit
R, o, D common
R, o, D unique
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Conclusion

Variance in spread rates between multiple reanzations
very high

Not entirely explained by stochastic population
processes

Founder effects seem to be important - test
experimentally



Acknowledgments

v Hiel T — e ey T ~ - -
L T T S
==t . s5g. 7 3 = [ e —_
ANREE s
——— ey

i';f; fﬁ- aﬁ
B e e . X

Assistants:

NSF

NSF

Claire Koenig
David Smith
Roselia Villalobos
Motoki Wu.

Biological Invasions IGERT
DGE 0114432
DEB 0516150



B e -
g Tl SV




Problem

Spartina alterniflora
Native to eastern US (and Gulf)
Invasive in western U.S.

2 sites
S.F. Bay - replacing native
Willapa Bay - invading bare ground



e Seattle

WASHINGTON

Willapa ___
Bay

® Portland

OREGON

NEVADA







Aerial photos courtesy of Washington State DNR
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Models

« Spatially-explicit Stochastic Simulation

— Consequences of an Allee effect

— Compare to analytic model to justify use of latter
In designing control strategies

* Analytical Non Spatial Model

— Finding Optimal Control Strategies



Field Results: Allee effect

mmm Clone
mm \eadow

Low density
plants set <
10 X the
seed

Davis, Taylor, Civille and Strong. 2004 Journal of Ecology 92



Spatially-explicit simulation model

*One square km
*Parameterized from

*GIS maps
(Civille)

Field data
(Davis, Taylor,
Civille,
Grevstad)

*Run for 100 years,
time step 1 year

*Clones have low
seed production

*Meadows have high
seed production




Allee Effect Slows Invasion

20 35 50

Taylor, Davis, Civille, Grevstad and Hastings. Ecology 2004



Analytical Non-spatial Model

Seedling Area

Clone Area

Meadow Area

: FECUNDITY OF CLONES
Parameters are
dependent on : FECUNDITY OF MEADOWS
density and . GROWTH RATE OF CLONES
numbers of
individuals. . GROWTH RATE OF MEADOWS

77 : MERGE RATE OF CLONES INTO MEADOWS



Analytical model predicts same
dynamics as simulation model
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Control of Spartina
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Control questions

How much Spartina needs to be removed every year to
eradicate invasion within 10 years

[s it better to prioritize removal of fast growing but low
seed producing clones or is it better to prioritize removal
of slow-growing but high seed producing g



Control Strategy

T, <MAX = Total arearemoved in yeart
o0<X <1 = fraction of T, that was meadows
o <(1- X,) <1 = fraction of T, that was clones




L

ectives

Total area removed
in 10 years




Minimum Removal needed to Eradicate
within 10 years

Equivalent of 15-
20% of initial
invasion has to
be removed
annually

Initial Area of Invasion

Age of Invasion (years)

Taylor and Hastings. Journal of Applied Ecology 2004



Optimal Control Strategies

Low Budget High Budget
Clones First Meadows First




Switch Control Strategies

Low Budget High Budget
Meadow First Clones First

Clones

Area Occupied (km?)




Summary

Low Budget | High Budget
Minimize Clones First | Clones First
Cost Only
Minimize Clones First | Meadows
Risk Only First
Minimize Clones First | Meadows
Cost and First
Risk
No Allee Clones First | Clones First
Effect

d
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Normalized Risk
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o
o

LOW  HIGH
ANNUAL BUDGET




Linear control model

Density independent

Three classes - seedlings,juveniles and adults
Express model in terms of area occupied

If the model were nonlinear this would become a
dynamic programming problem -

Difficult numerical problem - cannot really get a
solution

So, can we simplify in this case?

(Hastings, Hall and Taylor, TPB in press)



Nip1 = L(:Nz: — Ht+1)-

Population = size without control — contribution of removed



What classes should be removed?

One year ahead?
The class that contributes the most area (normalized by
‘cost’) should be removed first
“Infinitely” far ahead?
The class that has the highest reproductive values
(normalized by ‘cost’) should be removed first
Therefore do intermediate case, finite time
horizon, which becomes a linear programming
problem (from previous slide)



Population size as a function of time and the annual budget allocated to
control, when the objective is to minimize the population within 10 years
subject to budget

constraint.
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The fraction of each stage class (green for isolates, red for meadows)
removed
by control in each year under the optimal control strategy.
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Initial conclusions

Optimal approach is time dependent
May be much more effective

Cost of waiting
Overall cost of control can be much less when started

earlier
Since a LP problem solution is always at a vertex —
focus on a single class unless budget large enough
to remove an entire class, then add one more class






Damage (Hall and Hastings, JTB)




Conclusions

Allee effect slows down invasion considerably

Best control strategy is to remove clones first if
budget is low or if minimizing for cost only

[f minimizing for risk and budget is high,
removing meadows first is best strategy

Meadow first strategy is risky es]pecially if budgets
for future years are unpredictable.
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Approach in Willapa Bay

Initial steps
(orthorectify, etc.)

With aid of GIS software, identify clones
By hand

Match up successive years
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*  Biomass Samples _ Spartina altemifiora
Willapa River 1994  [i- Willapa Bay, WA

Willapa River 1997

[P willapa River 2000
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Approach in SF Bay

Low resolution, high bandwidth data

Identify components by ‘spectral signature’
Ground truthing

Choose number of components to identify
Mud
Water
Spartina
Other vegetation

(Rosso, P. H., Ustin, S. L. & (2005)
International Journal of Remote Sensing 26: 5169 —

5191)
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Comparison of approaches

Willapa SF Bay
High resolution, low Low resolution, high
bandwidth bandwidth
High accuracy Lower accuracy
Labor intensive After difficult initial
Data expensive steps, easier to
Works well with implement
invasion into bare mud Can handle multiple

types
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