Dual polar graphs and the quantum algebra $U_q(\mathfrak{sl}_2)$

Chalermpong Worawannotai (Boyd)
worawann@math.wisc.edu

University of Wisconsin-Madison

BIRS, April 28, 2011
Overview

1. The quantum algebra \(U_q(\mathfrak{sl}_2) \)
2. Distance-regular graphs
3. Near polygons
4. Dual polar graphs
5. A \(U_q(\mathfrak{sl}_2) \)-module structure for dual polar graphs
Let \(q \in \mathbb{C} \) such that \(q \) is not a root of 1.

Definition

Let \(U_q(\mathfrak{sl}_2) \) denote the unital associative \(\mathbb{C} \)-algebra with generators \(k^{\pm1}, e, f \) and the following relations:

\[
\begin{align*}
kk^{-1} &= k^{-1}k = 1 \\
ke &= q^2ek \\
kf &= q^{-2}fk \\
ef - fe &= \frac{k - k^{-1}}{q - q^{-1}}
\end{align*}
\]
Let Γ = (X, R) denote a finite, undirected, connected graph, without loops or multiple edges. Let D denote the diameter of Γ. Γ is called **distance-regular** whenever for all integers h, i, j (0 ≤ h, i, j ≤ D) and for all vertices x, y ∈ X with ∂(x, y) = h, the number

\[p^h_{ij} = |\{z ∈ X| ∂(x, z) = i, ∂(z, y) = j\}| \]

is independent of x and y. The \(p^h_{ij} \) are called the **intersection numbers** of Γ.
Let $V = \mathbb{C}^X$.
Observe $\text{Mat}_X(\mathbb{C})$ acts on V by left multiplication.
We call V the **standard module**.
For $y \in X$, let \hat{y} denote the element of V with 1 in the y-coordinate and 0 in all other coordinates.
For $0 \leq i \leq D$ let A_i denote the ith distance matrix of Γ. We abbreviate $A = A_1$.

Observe

1. $A_0 = I$
2. $\sum_{i=0}^{D} A_i = J$
3. $\tilde{A}_i = A_i \quad (0 \leq i \leq D)$
4. $A_i^t = A_i \quad (0 \leq i \leq D)$
5. $A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h \quad (0 \leq i, j \leq D)$

Using these facts $\{A_i\}_{i=0}^{D}$ form a basis for a commutative subalgebra M of $\text{Mat}_X(\mathbb{C})$, called the **Bose-Mesner algebra** of Γ. It turns out A generates M.

Chalermpong Worawannotai (Boyd) worawann@math.wisc.edu
M has a second basis \(\{ E_i \}_{i=0}^D \) such that

1. \(E_0 = |X|^{-1} J \)
2. \(\sum_{i=0}^D E_i = I \)
3. \(\bar{E}_i = E_i \) \((0 \leq i \leq D) \)
4. \(E_i^t = E_i \) \((0 \leq i \leq D) \)
5. \(E_i E_j = \delta_{ij} E_i \) \((0 \leq i, j \leq D) \)

We call \(\{ E_i \}_{i=0}^D \) the \textbf{primitive idempotents} of \(\Gamma \).
Since \(\{ E_i \}_{i=0}^D \) form a basis for \(M \) there exists complex scalars \(\{ \theta_i \}_{i=0}^D \) such that \(A = \sum_{i=0}^D \theta_i E_i \).

Observe \(AE_i = E_i A = \theta_i E_i \) for \(0 \leq i \leq D \).

The scalars \(\{ \theta_i \}_{i=0}^D \) are mutually distinct since \(A \) generates \(M \).

We call \(\theta_i \) the **eigenvalue** of \(\Gamma \) associated with \(E_i \).
Since $A_i \circ A_j = \delta_{ij} A_i$ for $0 \leq i, j \leq D$, M is closed under \circ. There exists complex scalars q^{h}_{ij} ($0 \leq h, i, j \leq D$) such that

$$E_i \circ E_j = |X|^{-1} \sum_{h=0}^{D} q^{h}_{ij} E_h \quad (0 \leq i, j \leq D)$$

We call q^{h}_{ij} the **Krein parameters** of Γ.
The graph Γ is said to be Q-polynomial (with respect to given ordering $\{E_i\}_{i=0}^D$ of the primitive idempotents) whenever for $0 \leq h, i, j \leq D$, $q_{ij}^h = 0$ (resp. $q_{ij}^h \neq 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two.
Assume Γ is Q-polynomial with respect to $\{E_i\}_{i=0}^D$.
Fix a vertex $x \in X$.
For $0 \leq i \leq D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ with (y,y)-entry

$$(E_i^*)_{yy} = \begin{cases}
1, & \text{if } \partial(x,y) = i \\
0, & \text{if } \partial(x,y) \neq i
\end{cases} \quad (y \in X).$$

We call $\{E_i^*\}_{i=0}^D$ the dual primitive idempotents of Γ with respect to x.

Observe $E_i^* V = \mathbb{C}\text{-span}\{\hat{z} | \partial(x,z) = i\}$.
Observe

1. $\sum_{i=0}^{D} E_i^* = 1$
2. $\bar{E}_i^* = E_i^*$ (0 ≤ i ≤ D)
3. $E_i^{*t} = E_i^*$ (0 ≤ i ≤ D)
4. $E_i^* E_j^* = \delta_{ij} E_i^*$ (0 ≤ i, j ≤ D)

From these facts $\{E_i^*\}_{i=0}^{D}$ form a basis for a commutative subalgebra $M^* = M^*(x)$ of $Mat_X(\mathbb{C})$. Call M^* the **dual Bose-Mesner algebra** of Γ with respect to x.
For $0 \leq i \leq D$ let $A_i^* = A_i^*(x)$ denote the diagonal matrix in $Mat_X(\mathbb{C})$ with (y, y)-entry

$$(A_i^*)_{yy} = |X|(E_i)_{xy}, \quad y \in X.$$

Then $\{A_i^*\}_{i=0}^D$ is a basis for M^* such that

1. $A_0^* = I$
2. $\overline{A}_i^* = A_i^*$ \hspace{1cm} ($0 \leq i \leq D$)
3. $A_i^{*t} = A_i^*$ \hspace{1cm} ($0 \leq i \leq D$)
4. $A_i^*A_j^* = \sum_{h=0}^{D} q_{ij}^h A_h^*$ \hspace{1cm} ($0 \leq i, j \leq D$)

Abbreviate $A^* = A_1^*$ and call it the **dual adjacency matrix** of Γ with respect to x.

It turns out A^* generates M^*.
Since \(\{ E_i^* \}_{i=0}^D \) form a basis for \(M^* \), there exists complex scalars \(\{ \theta_i^* \}_{i=0}^D \) such that \(A^* = \sum_{i=0}^D \theta_i^* E_i^* \).

Observe \(A^* E_i^* = E_i^* A^* = \theta_i^* E_i^* \) for \(0 \leq i \leq D \).

The scalars \(\{ \theta_i^* \}_{i=0}^D \) are mutually distinct since \(A^* \) generates \(M^* \).

We call \(\theta_i^* \) the **dual eigenvalue** of \(\Gamma \) associated with \(E_i^* \).
Let $T = T(x)$ denote the subalgebra of $\text{Mat}_X(\mathbb{C})$ generated by M and M^*. We call T the subconstituent algebra or Terwilliger algebra of Γ with respect to x. Observe that A, A^* generate T.

Fact: V is a direct sum of irreducible T-modules.
Let W denote an irreducible T-module.
Observe $W = \sum_{i=0}^{D} E_i^* W = \sum_{i=0}^{D} E_i W$ (d.s.).
Define
- $r = \min\{i | 0 \leq i \leq D, E_i^* W \neq 0\}$, endpoint of W
- $t = \min\{i | 0 \leq i \leq D, E_i W \neq 0\}$, dual endpoint of W
- $d = |\{i | 0 \leq i \leq D, E_i^* W \neq 0\}| - 1$, diameter of W
- $d' = |\{i | 0 \leq i \leq D, E_i W \neq 0\}| - 1$

It turns out that $d = d'$.
A connected graph $\Gamma = (X, R)$ of diameter $D \geq 2$ is called a near polygon if the following two axioms hold.

(NP1) There are no induced subgraphs of shape $K_{1,2,1}$.

(NP2) If $y \in X$ and M is a maximal clique of Γ with $\partial(y, M) < D$, then there exists a unique vertex in M nearest to y.
A distance-regular graph Γ is a near polygon if and only if the axiom (NP1) holds and $a_i = a_1 c_i$ for $1 \leq i \leq D$.

In this case we call Γ a regular near polygon.
Definition

Let $\Gamma = (X, R)$ denote a regular near polygon. A subgraph G of Γ is called **weak-geodetically closed** whenever for all vertices x, y in G and for all vertices z in X

$$\partial(x, z) + \partial(z, y) \leq \partial(x, y) + 1 \quad \rightarrow \quad z \in G.$$
Let Γ denote a regular near polygon. A subgraph Q of Γ is called a **quad** whenever Q has diameter 2 and Q is weak-geodetically closed.
Let b denote a prime power.

Let \mathbb{F}_b denote a finite field of order b.

Let U denote a finite dimensional vector space over \mathbb{F}_b endowed with a symplectic form, a quadratic form, or a Hermitean form.

A subspace W of U is called **isotropic** whenever the form vanishes completely on W.

Each maximal isotropic subspace of U has same dimension, say D.
We define a graph $\Gamma = (X, R)$ where

- X is the set of all maximal isotropic subspaces of U
- $R = \{yz \in X^2 | \dim(y \cap z) = D - 1\}$

Γ is distance-transitive so Γ is distance-regular.

For $y, z \in X$, $\partial(y, z) = i$ if and only if $\dim(y \cap z) = D - i$.

We call Γ a **dual polar graph**.
From now on, fix a dual polar graph $\Gamma = (X, R)$. Fix a vertex x and $T = T(x)$.
\(\Gamma \) is a Q-polynomial with respect to the ordering \(\theta_0 > \theta_1 > \ldots > \theta_D \) of eigenvalues. Moreover, the dual eigenvalues are given by

\[
\theta_i^* = \zeta + \xi b^{-i} \quad \text{for } 0 \leq i \leq D,
\]

where

\[
\zeta = \frac{-b(b^{D+e-2} + 1)}{b - 1},
\]

\[
\xi = \frac{b^2(b^{D+e-2} + 1)(b^{D+e-1} + 1)}{(b - 1)(b^e + b)}.
\]
Raising, flattening and lowering maps

Definition

\[R = \sum_{i=0}^{D-1} E_{i+1}^* A E_i^* \quad \text{raising map} \]

\[F = \sum_{i=0}^{D} E_i^* A E_i^* \quad \text{flattening map} \]

\[L = \sum_{i=1}^{D} E_{i-1}^* A E_i^* \quad \text{lowering map} \]

Observe \(F^t = F \) and \(R^t = L \).
Let $y \in X$ such that $\partial(x, y) = i$.

\[
R \hat{y} = \sum_{z \in \Gamma_{i+1}(x) \cap \Gamma(y)} \hat{z}
\]

\[
F \hat{y} = \sum_{z \in \Gamma_{i}(x) \cap \Gamma(y)} \hat{z}
\]

\[
L \hat{y} = \sum_{z \in \Gamma_{i-1}(x) \cap \Gamma(y)} \hat{z}
\]

Observe that $A = R + F + L$.
The map K

Pick $q \in \mathbb{C}$ such that $b = q^2$.

Definition

$$K = \sum_{i=0}^{D} q^{-2i} E_i^*.$$

Observe K is invertible and

$$A^* = \zeta I + \xi K.$$

R, F, L, K together generate T.

Chalermpong Worawannotai (Boyd) worawann@math.wisc.edu

Dual polar graphs and the quantum algebra $U_q(sl_2)$
Lemma

1. $KR = q^{-2}RK$.
2. $KF = FK$.
3. $KL = q^2LK$.

Reminiscent of the defining relations of $U_q(\mathfrak{sl}_2)$.
It’s almost as $k \approx K, e \approx L, f \approx R$ but not quite.
Relations involving R, F, L

Lemma

1. \[LF - q^2 FL = (q^{2e} - 1)L. \]
2. \[FR - q^2 RF = (q^{2e} - 1)R. \]

\textit{Pf:} Γ is regular near polygon, its quads are classical, has constant line size $a_1 + 2$.

Chalermpong Worawannotai (Boyd) worawann@math.wisc.edu

Dual polar graphs and the quantum algebra $U_q(\mathfrak{sl}_2)$
Relations involving R, L

Lemma

1. \[-\frac{q^4}{q^2 + 1} R L^2 + L R L - \frac{q^{-2}}{q^2 + 1} L^2 R = q^{2e+2D-2} L,\]

2. \[-\frac{q^4}{q^2 + 1} R^2 L + R L R - \frac{q^{-2}}{q^2 + 1} L R^2 = q^{2e+2D-2} R.\]

Pf: A, A^* satisfy the tridiagonal relation

\[[A, A^2 A^* - \beta AA^* A + A^* A^2 - \gamma (AA^* + A^* A) - \rho A^*] = 0.\]
Summary of relations in T

1. $KK^{-1} = K^{-1}K = 1$
2. $KR = q^{-2}RK$
3. $KF = FK$
4. $KL = q^2LK$
5. $LF - q^2FL = (q^{2e} - 1)L$
6. $FR - q^2RF = (q^{2e} - 1)R$
7. $-\frac{q^4}{q^2 + 1}RL^2 + LRL - \frac{q^{-2}}{q^2 + 1}L^2R = q^{2e+2D-2}L$
8. $-\frac{q^4}{q^2 + 1}R^2L + RLR - \frac{q^{-2}}{q^2 + 1}LR^2 = q^{2e+2D-2}R$
The central elements C_0, C_1, C_2 of T

Definition

1. $C_0 = KF + \frac{q^{2e} - 1}{q^2 - 1} K,$

2. $C_1 = -\frac{q^{-2}}{q^2 + 1} KLR + \frac{q^2}{q^2 + 1} KRL + \frac{q^{2e+2D-2}}{q^2 - 1} K,$

3. $C_2 = -\frac{q^{-2}}{q^2 + 1} K^2 LR + \frac{1}{q^2 + 1} K^2 RL + \frac{q^{2e+2D-2}}{q^4 - 1} K^2.$

Theorem

C_0, C_1, C_2 generate the center of $T.$
Lemma

Let \(W \) denote an irreducible \(T \)-module with diameter \(d \), endpoint \(r \) and dual endpoint \(t \). Then on \(W \)

1. \(C_0 \) acts as the scalar
\[
\frac{1}{q^2 - 1} \left(q^{2e+2D-2d-2r-2t} - q^{2t-2r} \right),
\]

2. \(C_1 \) acts as the scalar
\[
\frac{q^{2e+2D-1}}{q^4 - 1} q^{-d-2r} (q^{d+1} + q^{-d-1}),
\]

3. \(C_2 \) acts as the scalar
\[
\frac{q^{2e+2D-2}}{q^4 - 1} q^{-2d-4r}.
\]
Lemma

There exist central elements Φ, Ψ of T with the following property. For all irreducible T-module W with endpoint r, dual endpoint t and diameter d, Φ, Ψ act on W as follows:

$$\Phi = q^{r+t+d-D}1$$
$$\Psi = q^{r-t}1$$
Lemma

\[C_2 = \frac{q^{2e-2}}{q^4 - 1} (\Phi \Psi)^{-2} \]
Recall the standard T-module $V = \mathbb{C}^X$.

Theorem

There exists a unique $U_q(\mathfrak{sl}_2)$-module structure on V such that on V

\[
\begin{align*}
 k &= q^D\Phi\Psi K, \\
 k^{-1} &= q^{-D}(\Phi\Psi K)^{-1}, \\
 e &= \Phi\Psi KL, \\
 f &= q^{1-2e-D}R.
\end{align*}
\]