Open Problems Concerning Automorphism Groups of Projective Planes

G. Eric Moorhouse

Department of Mathematics
University of Wyoming

BIRS 25 April 2011
A **projective plane** is a point-line incidence structure such that

- every pair of distinct points lies on a common line;
- every pair of distinct lines meets in a common point;
- there exists a quadrangle (four points, no three of which are collinear).

There exists a cardinal number n (finite or infinite), called the **order** of the plane, such that

- every line has $n + 1$ points;
- every point is on $n + 1$ lines;
- there are $n^2 + n + 1$ points and the same number of lines.

An **automorphism** (i.e. collineation) of a projective plane is a permutation of the points which preserves collinearity.
A **projective plane** is a point-line incidence structure such that
- every pair of distinct points lies on a common line;
- every pair of distinct lines meets in a common point;
- there exists a quadrangle (four points, no three of which are collinear).

There exists a cardinal number n (finite or infinite), called the **order** of the plane, such that
- every line has $n + 1$ points;
- every point is on $n + 1$ lines;
- there are $n^2 + n + 1$ points and the same number of lines.

An **automorphism** (i.e. collineation) of a projective plane is a permutation of the points which preserves collinearity.
A projective plane is a point-line incidence structure such that
- every pair of distinct points lies on a common line;
- every pair of distinct lines meets in a common point;
- there exists a quadrangle (four points, no three of which are collinear).

There exists a cardinal number \(n \) (finite or infinite), called the order of the plane, such that
- every line has \(n + 1 \) points;
- every point is on \(n + 1 \) lines;
- there are \(n^2 + n + 1 \) points and the same number of lines.

An automorphism (i.e. collineation) of a projective plane is a permutation of the points which preserves collinearity.
Known planes of small order

Number of planes up to isomorphism (i.e. collineations):

<table>
<thead>
<tr>
<th>n</th>
<th>number of planes of order n</th>
<th>n</th>
<th>number of planes of order n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>16</td>
<td>≥ 22</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>17</td>
<td>≥ 1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>19</td>
<td>≥ 1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>23</td>
<td>≥ 1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>25</td>
<td>≥ 193</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>27</td>
<td>≥ 13</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>29</td>
<td>≥ 1</td>
</tr>
<tr>
<td>11</td>
<td>≥ 1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>13</td>
<td>≥ 1</td>
<td>49</td>
<td>$> 280,000$</td>
</tr>
</tbody>
</table>
pzip: A compression utility for finite planes

Storage requirements for a projective plane of order n:

<table>
<thead>
<tr>
<th>n</th>
<th>size of line sets</th>
<th>size of MOLS</th>
<th>gzipped MOLS</th>
<th>pzip</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>5 KB</td>
<td>1.3 KB</td>
<td>0.2 KB</td>
<td>0.06 KB</td>
</tr>
<tr>
<td>25</td>
<td>63 KB</td>
<td>15 KB</td>
<td>9 KB</td>
<td>0.9 KB</td>
</tr>
<tr>
<td>49</td>
<td>550 KB</td>
<td>110 KB</td>
<td>81 KB</td>
<td>6 KB</td>
</tr>
</tbody>
</table>

See http://www.uwyo.edu/moorhouse/pzip.html
The Classical Planes

Let F be a field. Denote by F^3 a 3-dimensional vector space over F.

The classical projective plane $P^2(F)$ has as its points and lines the subspaces of F^3 of dimension 1 and 2, respectively. Incidence is inclusion. The order of the plane is $|F|$, finite or infinite.

The automorphism group of $P^2(F)$ is $PΓL_3(F)$, which acts 2-transitively on points, and transitively on ordered quadrangles. No known planes have as much symmetry as the classical planes.
Let F be a field. Denote by F^3 a 3-dimensional vector space over F.

The classical projective plane $P^2(F)$ has as its points and lines the subspaces of F^3 of dimension 1 and 2, respectively. Incidence is inclusion. The order of the plane is $|F|$, finite or infinite.

The automorphism group of $P^2(F)$ is $PΓL_3(F)$, which acts 2-transitively on points, and transitively on ordered quadrangles. No known planes have as much symmetry as the classical planes.
Let Π be a projective plane, and let $G = \text{Aut}(\Pi)$.

Theorem (Ostrom-Dembowski-Wagner)

In the finite case, Π is classical iff G is 2-transitive on points.

In the infinite case, there exist nonclassical planes whose automorphism group is 2-transitive on points (even transitive on ordered quadrangles).
Let Π be a projective plane, and let $G = \text{Aut}(\Pi)$.

Theorem (Ostrom-Dembowski-Wagner)

In the finite case, Π is classical iff G is 2-transitive on points.

In the infinite case, there exist nonclassical planes whose automorphism group is 2-transitive on points (even transitive on ordered quadrangles).
Consider a classical projective plane $\Pi = P^2(F)$.

Every quadrangle in Π generates a subplane isomorphic to $P^2(K)$ where K is the prime subfield of F (i.e. \mathbb{F}_p or \mathbb{Q}, according to the characteristic of F).

Such a subplane is proper iff $[F : K] > 1$.
Open Question

Let Π be a finite projective plane in which every quadrangle generates a proper subplane. Must Π be classical? (necessarily of order p^r with $r \geq 2$)

The answer is known only in special cases:

If Π is a finite projective plane in which every quadrangle generates a subplane of order 2, then $\Pi \cong P^2(\mathbb{F}_{2^r})$ (Gleason, 1956).

If Π is a finite projective plane of order n^2 in which every quadrangle generates a subplane of order n, then $n = p$ and $\Pi \cong P^2(\mathbb{F}_{p^2})$ (Blokhuis and Sziklai, 2001 for n prime; Kantor and Penttila, 2010 in general).
Open Question

Let Π be a finite projective plane in which every quadrangle generates a proper subplane. Must Π be classical? (necessarily of order p^r with $r \geq 2$)

The answer is known only in special cases:

If Π is a finite projective plane in which every quadrangle generates a subplane of order 2, then $\Pi \cong P^2(\mathbb{F}_{2^r})$ (Gleason, 1956).

If Π is a finite projective plane of order n^2 in which every quadrangle generates a subplane of order n, then $n = p$ and $\Pi \cong P^2(\mathbb{F}_p^2)$ (Blokhuis and Sziklai, 2001 for n prime; Kantor and Penttila, 2010 in general).
Open Question

Let Π be a finite projective plane in which every quadrangle generates a proper subplane. Must Π be classical? (necessarily of order p^r with $r \geq 2$)

The answer is known only in special cases:

If Π is a finite projective plane in which every quadrangle generates a subplane of order 2, then $\Pi \cong P^2(\mathbb{F}_{2^r})$ (Gleason, 1956).

If Π is a finite projective plane of order n^2 in which every quadrangle generates a subplane of order n, then $n = p$ and $\Pi \cong P^2(\mathbb{F}_{p^2})$ (Blokhuis and Sziklai, 2001 for n prime; Kantor and Penttila, 2010 in general).
Consider a projective plane Π with automorphism group $G = \text{Aut}(\Pi)$.

Theorem (Brauer, 1941)

In the finite case, G has equally many orbits on points and on lines.

Open Problem (attributed to Kantor)

In the general case, must G have equally many orbits on points and on lines?
Consider a projective plane Π with automorphism group $G = \text{Aut}(\Pi)$.

Theorem (Brauer, 1941)

In the finite case, G has equally many orbits on points and on lines.

Open Problem (attributed to Kantor)

In the general case, must G have equally many orbits on points and on lines?
Orbits on n-tuples of Points

In the classical case $\Pi = P^2(F)$, G has:
- 1 orbit on points;
- 1 orbit on ordered pairs of distinct points;
- 2 orbits on ordered triples of distinct points;
- $O(|F|)$ orbits on ordered 4-tuples of distinct points. (In the case of collinear 4-tuples, consider the cross-ratio.)

Open Problem

Does there exist an infinite plane with only finitely many orbits on k-tuples of distinct points for every $k \geq 1$?

Even for $k = 4$ this is open.
Orbits on \(n \)-tuples of Points

In the classical case \(\Pi = P^2(F) \), \(G \) has

- 1 orbit on points;
- 1 orbit on ordered pairs of distinct points;
- 2 orbits on ordered triples of distinct points;
- \(O(|F|) \) orbits on ordered 4-tuples of distinct points. (In the case of collinear 4-tuples, consider the cross-ratio.)

Open Problem

Does there exist an infinite plane with only finitely many orbits on \(k \)-tuples of distinct points for every \(k \geq 1 \)?

Even for \(k = 4 \) this is open.
Orbits on n-tuples of Points

In the classical case $\Pi = P^2(F)$, G has

- 1 orbit on points;
- 1 orbit on ordered pairs of distinct points;
- 2 orbits on ordered triples of distinct points;
- $O(|F|)$ orbits on ordered 4-tuples of distinct points. (In the case of collinear 4-tuples, consider the cross-ratio.)

Open Problem

Does there exist an infinite plane with only finitely many orbits on k-tuples of distinct points for every $k \geq 1$?

Even for $k = 4$ this is open.
A permutation group G on X is **oligomorphic** if G has finitely many orbits on X^k for each $k \geq 1$. See Cameron (1990).

(Taking k-tuples of points in X, or k-tuples of distinct points, doesn’t matter.)

Open Question

Does there exist an infinite projective plane Π admitting a group $G \leq \text{Aut}(\Pi)$ which is oligomorphic on points? (equivalently, on lines).

If such a plane exists, we may assume (by the Löwenheim-Skolem Theorem) that its order is \aleph_0 (countably infinite). Such a plane is called \aleph_0-categorical.
A permutation group G on X is **oligomorphic** if G has finitely many orbits on X^k for each $k \geq 1$. See Cameron (1990).

(Taking k-tuples of points in X, or k-tuples of distinct points, doesn’t matter.)

Open Question

Does there exist an infinite projective plane Π admitting a group $G \leq \text{Aut}(\Pi)$ which is oligomorphic on points? (equivalently, on lines).

If such a plane exists, we may assume (by the Löwenheim-Skolem Theorem) that its order is \aleph_0 (countably infinite). Such a plane is called \aleph_0-categorical.
A permutation group G on X is **oligomorphic** if G has finitely many orbits on X^k for each $k \geq 1$. See Cameron (1990).

(Taking k-tuples of points in X, or k-tuples of distinct points, doesn’t matter.)

Open Question

Does there exist an infinite projective plane Π admitting a group $G \leq \text{Aut}(\Pi)$ which is oligomorphic on points? (equivalently, on lines).

If such a plane exists, we may assume (by the Löwenheim-Skolem Theorem) that its order is \aleph_0 (countably infinite). Such a plane is called \aleph_0-categorical.
From now on, assume Π is an \aleph_0-categorical projective plane, and let $G \leq Aut(\Pi)$ be oligomorphic on points.

Useful fact: In an oligomorphic group G, the stabilizer of any finite point set is also oligomorphic.

Lemma

Every finite substructure $S \subset \Pi$ lies in a finite subplane.

Proof.

Let $G_S \leq G$ be the pointwise stabilizer of S. Then $G_S(S)$ fixes pointwise the substructure $\langle S \rangle$ generated by S. This substructure must be finite, otherwise $G_S(S)$ has infinitely many fixed points, hence infinitely many orbits.
\(\aleph_0\)-categorical planes

From now on, assume \(\Pi\) is an \(\aleph_0\)-categorical projective plane, and let \(G \leq \text{Aut}(\Pi)\) be oligomorphic on points.

Useful fact: In an oligomorphic group \(G\), the stabilizer of any finite point set is also oligomorphic.

Lemma

Every finite substructure \(S \subset \Pi\) lies in a finite subplane.

Proof.

Let \(G(S) \leq G\) be the pointwise stabilizer of \(S\). Then \(G(S)\) fixes pointwise the substructure \(\langle S\rangle\) generated by \(S\). This substructure must be finite, otherwise \(G(S)\) has infinitely many fixed points, hence infinitely many orbits.
Π an \aleph_0-categorical projective plane, $G \leq \text{Aut}(\Pi)$ oligomorphic

Without loss of generality, G fixes pointwise a finite subplane $\Pi_0 \subset \Pi$. (Otherwise replace G by the oligomorphic subgroup $G(S)$ where S is a quadrangle.)

Consider a point $P \in \Pi$. We say
- P is of type I if $P \in \Pi_0$;
- P is of type II if $P \not\in \Pi_0$ but P lies on a line of Π_0;
- P is of type III if P lies on no line of Π_0.

Dually classify lines of Π as type I, II or III.
Π an \aleph_0-categorical projective plane, $G \leq \text{Aut}(\Pi)$ oligomorphic

Without loss of generality, G fixes pointwise a finite subplane $\Pi_0 \subset \Pi$. (Otherwise replace G by the oligomorphic subgroup $G(S)$ where S is a quadrangle.)

Consider a point $P \in \Pi$. We say
- P is of type I if $P \in \Pi_0$;
- P is of type II if $P \notin \Pi_0$ but P lies on a line of Π_0;
- P is of type III if P lies on no line of Π_0.

Dually classify lines of Π as type I, II or III.
The Burnside Ring $\mathcal{B}(G)$

Two G-sets X and Y are equivalent if there exists a G-equivariant bijection $\theta : X \rightarrow Y$, i.e. $\theta(x^g) = \theta(x)^g$ for all $x \in X$, $g \in G$.

The equivalence class of a G-set X is denoted $[X]$.

Given G-sets X and Y, the disjoint union $X \uplus Y$ and Cartesian product $X \times Y$ are G-sets.

The Burnside ring $\mathcal{B}(G)$ is the \mathbb{Z}-algebra consisting of formal sums $\sum [X] c[X][X]$, $c[X] \in \mathbb{Z}$ (almost all zero), where

$$[X] + [Y] = [X \uplus Y], \quad [X][Y] = [X \times Y].$$
The Burnside Ring $\mathcal{B}(G)$

Two G-sets X and Y are equivalent if there exists a G-equivariant bijection $\theta : X \to Y$, i.e. $\theta(x^g) = \theta(x)^g$ for all $x \in X, g \in G$.

The equivalence class of a G-set X is denoted $[X]$.

Given G-sets X and Y, the disjoint union $X \uplus Y$ and Cartesian product $X \times Y$ are G-sets.

The Burnside ring $\mathcal{B}(G)$ is the \mathbb{Z}-algebra consisting of formal sums $\sum [X] c[X][X]$, $c[X] \in \mathbb{Z}$ (almost all zero), where $[X] + [Y] = [X \uplus Y]$, $[X][Y] = [X \times Y]$.
The Burnside Ring $\mathcal{B}(G)$

Two G-sets X and Y are **equivalent** if there exists a G-equivariant bijection $\theta : X \to Y$, i.e. $\theta(x^g) = \theta(x)^g$ for all $x \in X$, $g \in G$.

The equivalence class of a G-set X is denoted $[X]$.

Given G-sets X and Y, the disjoint union $X \uplus Y$ and Cartesian product $X \times Y$ are G-sets.

The **Burnside ring** $\mathcal{B}(G)$ is the \mathbb{Z}-algebra consisting of formal sums $\sum [X] c[X][X]$, $c[X] \in \mathbb{Z}$ (almost all zero), where

$$[X] + [Y] = [X \uplus Y], \quad [X][Y] = [X \times Y].$$
Π an ℵ₀-categorical projective plane,
\(G \leq \text{Aut}(\Pi) \) oligomorphic

Let \(P \) and \(\ell \) be a point and line of \(\Pi_0 \).

The set \(II_\ell \) of type II points of \(\ell \) is a \(G \)-set; as is the set \(II_P \) of type II lines through \(P \).

Lemma

\([II_P] = [II_\ell], \) independent of the choice of point \(P \) and line \(\ell \) of \(\Pi_0 \).
Let P and ℓ be a point and line of Π_0. The set \mathcal{II}_ℓ of type II points of ℓ is a G-set; as is the set \mathcal{II}_P of type II lines through P.

Lemma

\[[\mathcal{II}_P] = [\mathcal{II}_\ell], \text{ independent of the choice of point } P \text{ and line } \ell \text{ of } \Pi_0. \]
Π an \aleph_0-categorical projective plane, $G \leq \text{Aut}(\Pi)$ oligomorphic

Denote by III the G-set consisting of all type III points. Dually, \tilde{III} is the G-set consisting of all type III lines.

Lemma

Let ℓ be a line of Π_0. Then $[II_{\ell}]^2 = [III] + c[II_{\ell}]$

where $c = n_0(n_0 - 1)$, $n_0 = \text{order of } \Pi_0$.

\[(R, S) \mapsto RS\]

\[II_\ell \times II_{\ell'} \rightarrow \tilde{III} \uplus \left(\bigcup_{O \in \Pi_0; \ O \notin \ell \cup \ell'} II_O \right)\]
Π an ℵ₀-categorical projective plane, $G \leq \text{Aut}(\Pi)$ oligomorphic

Lemma

Let ℓ be a line of Π_0. Then $[\text{II}_\ell]^2 = [\text{III}] + c[\text{II}_\ell]$ where $c = n_0(n_0 - 1)$, $n_0 = \text{order of } \Pi_0$.

Corollary

$[\text{III}] = [\text{III}]$ and $[\text{II}_\ell]^2 = [\text{III}] + c[\text{II}_\ell]$.

Proof.

Dualising the previous lemma,

$[\text{III}] + c[\text{II}_\ell] = [\text{II}_\ell]^2 = [\text{III}] + c[\text{II}_\ell]$.

Cancellation of the $c[\text{II}_\ell]$ terms is justified in $\mathcal{B}(G)$.
Let $\nu_{m,n} = \text{number of } G\text{-orbits on } II^m_\ell \times III^n$.

Lemma

For all $m, n \geq 0$, we have $\nu_{m+2,n} = \nu_{m,n+1} + c\nu_{m+1,n}$.

Proof.

$$[III]^{m+2} [III]^n = [II\ell]^m ([III] + c[II\ell]) [III]^n$$

$$= [II\ell]^m [III]^{n+1} + c[II\ell]^{m+1} [III]^n.$$
\(\Pi \) an \(\aleph_0 \)-categorical projective plane,
\(G \leq \text{Aut}(\Pi) \) oligomorphic

The previous recurrence for

\[
\nu_{m,n} = \text{number of } G\text{-orbits on } II^m_\ell \times III^n
\]

is rephrased in terms of the generating function

\[
F(s, t) = \sum_{m,n \geq 0} \nu_{m,n} s^m t^n
\]

as follows.

Lemma

\[
F(s, t) = \sum_{k \geq 0} (a_k + b_k s) F_k(s, t) \text{ where}
\]

\[
F_k(s, t) = \frac{1}{(1 - cs)t - s^2} \left[t^{k+1} - \frac{s^{2(k+1)}}{(1 - cs)^{k+1}} \right].
\]
\[\Pi \text{ an } \aleph_0\text{-categorical projective plane, } \]
\[G \leq \text{Aut}(\Pi) \text{ oligomorphic} \]

Theorem

Under our assumption (existence of an \(\aleph_0\text{-categorical projective plane}, \) there exist (infinitely many) finite nonclassical projective planes, in which every quadrangle generates a proper subplane.

Proof (Sketch).

Without loss of generality, the subplane \(\Pi_0 \subset \Pi \) is nonclassical. Let \(M \) be the maximum order of a subplane of the form \(\langle \Pi_0, P, Q, R, S \rangle \) where \((P, Q, R, S) \) is a quadrangle of \(\Pi \). Any subplane of \(\Pi \) containing \(\Pi_0 \) of order exceeding \(M \), has the required property.
In all known cases of a finite projective plane of order \(n \) with a subplane of order \(n_0 \), we have

- \(n = n_0^r \) for some \(r \geq 1 \); or
- \(n_0 \in \{2, 3\} \).

Moreover, subplanes of order 3 are rare unless \(n = 3^r \).

Hopes for an \(\aleph_0 \)-categorical plane do not look bright!
Subplanes of known planes

In all known cases of a finite projective plane of order n with a subplane of order n_0, we have

- $n = n_0^r$ for some $r \geq 1$; or
- $n_0 \in \{2, 3\}$.

Moreover, subplanes of order 3 are rare unless $n = 3^r$.

Hopes for an \aleph_0-categorical plane do not look bright!
Thank You!

Questions?