Paley Uniform Hypergraphs

Shonda Gosselin

University of Winnipeg

Algebraic Graph Theory Workshop
Banff International Research Station
April 29, 2011
Outline
Outline
The Paley graph P_n

Definition
For a prime power $n \equiv 1 \pmod{4}$ and a finite field \mathbb{F}_n, the Paley graph of order n, denoted by P_n, is the simple graph with vertex set $V = \mathbb{F}_n$ and edge set E, where

$$\{x, y\} \in E \iff x - y \text{ is a nonzero square}.$$
P_5

P_5^C
P_{13}
P_{13}
P_n is self-complementary

If ω is a generator of \mathbb{F}_n^*, then

$$x - y \in \langle \omega^2 \rangle \iff \omega x - \omega y = \omega(x - y) \notin \langle \omega^2 \rangle.$$

$T_{\omega,0} : x \mapsto \omega x$ is an isomorphism from P_n to its complement. \qed
Properties of the Paley graph P_n

- Cayley graph $\text{Cay}(\mathbb{F}_n; \langle \omega^2 \rangle)$ (vertex-transitive)
- self-complementary
- arc-transitive
- strongly regular $(n, \frac{n-1}{2}, \frac{n-5}{4}, \frac{n-1}{4})$ (a conference graph)
- distance-transitive
- P_n and P_n^C are the relation graphs of a symmetric 2-class association scheme.
- $\text{Aut}(P_n)$ is an index-2 subgroup of the affine group $\text{AGL}(1, n)$
Definition
A simple k-uniform hypergraph X with vertex set V and edge set E is *(cyclically) q-complementary* if there is a permutation θ on V such that the sets

$$E, E^\theta, E^{\theta^2}, \ldots, E^{\theta^{q-1}}$$

partition the set of k-subsets of V.

θ is called a **q-antimorphism** of X (i.e., $\theta \in \text{Ant}_q(X)$).
The 2-complementary 2-uniform hypergraphs are the **self-complementary graphs**, which have been well studied due to their connection to the graph isomorphism problem.

The q-complementary k-hypergraphs correspond to **cyclic edge decompositions (cyclotomic factorisations)** of the complete k-uniform hypergraph into q parts.

The vertex-transitive q-complementary k-uniform hypergraphs correspond to **large sets of isomorphic designs** which are point-transitive.

The strongly regular q-complementary graphs are the relation graphs of **symmetric q-class cyclotomic association schemes**.
The Paley graph P_n - revisited

Definition
For a prime power $n \equiv 1 \pmod{4}$ and a finite field \mathbb{F}_n of order n, the **Paley graph of order n**, denoted by $P_n = (V, E)$, is the simple graph with $V = \mathbb{F}_n$ and

$$\{x, y\} \in E \iff x - y \in \langle \omega^2 \rangle$$

where ω is a generator of \mathbb{F}_n^*.
Generalized Paley Graphs

Definition
Let \mathbb{F}_n be a finite field of order n, and let q be a divisor of $n - 1$ where $q \geq 2$, and if n is odd then $(n - 1)/q$ is even. Let $S \leq \mathbb{F}_n^*$ where $|S| = (n - 1)/q$.

The generalized Paley graph $\text{GPaley}(n, q)$ is the graph with vertex set \mathbb{F}_n and edge set all pairs $\{x, y\}$ with $x - y \in S$.

Generalized Paley Graphs

Definition
Let \mathbb{F}_n be a finite field of order n, and let q be a divisor of $n − 1$ where $q \geq 2$, and if n is odd then $(n − 1)/q$ is even. Let $S \leq \mathbb{F}_n^*$ where $|S| = (n − 1)/q$.

The **generalized Paley graph** $GPaley(n, q)$ is the graph with vertex set \mathbb{F}_n and edge set all pairs $\{x, y\}$ with $x − y \in S$.

- Cayley graph $\text{Cay}(\mathbb{F}_n; S = \langle \omega^q \rangle)$ (vertex-transitive)
- arc-transitive
- q-complementary ($x \mapsto \omega x$ is a q- antimorphism)
- the relation graphs of symmetric q-class cyclotomic association schemes.
- If $n = p^\alpha$ and q divides $p − 1$, then $GPaley(n, q)$ is strongly regular, and $\text{Aut}(GPaley(n, q))$ is an index-q subgroup of $\text{AGL}(1, n)$.
Constructing q-complementary k-hypergraphs

Partition a group G into q sets

$$C_0, C_1, \ldots, C_{q-1},$$

where each C_i is a union of cosets of a subgroup S of G.

Find an operation $\Psi : V^{(k)} \to G$ and a permutation $\theta : V \to V$ such that

$$\Psi(\{x_1, \ldots, x_k\}) \in C_i \iff \Psi(\{x_1, \ldots, x_k\}^\theta) \in C_{i+s}$$

for some s where $\gcd(s, q) = 1$.

Let $E_i = \{e \in V^{(k)} \mid \Psi(e) \in C_i\}$.

Then $X_i = (V, E_i)$ is q-complementary with q-antimorphism θ.
Examples

1. Generalized Paley Graphs:
 - $V = \mathbb{F}_n$.
 - $G = \mathbb{F}_n^*$.
 - $S = \langle \omega^q \rangle$.
 - $\Psi(\{x, y\}) = x - y$.

2. q-Paley k-hypergraphs:
 - $V = \mathbb{F}_n$.
 - G is the group of squares of \mathbb{F}_n^*.
 - $S = \langle \omega^{2q} \rangle$
 - Ψ: the square of the Van der Monde determinant,
 \[\text{VM}^2(x_1, x_2, \ldots, x_k) = \prod_{i<j} (x_i - x_j)^2. \]
The q-Paley k-hypergraph $P_{n,k}^q$

Definition
q is prime, ℓ is the highest power of q dividing k or $k-1$.

n is a prime power, $n \equiv 1 \pmod{q^{\ell+1}}$

G is the group of squares in \mathbb{F}_n^*.

$S = \langle \omega^{2q(k/2)} \rangle$.

$c = \gcd(|G|, (k/2))$. (qc is the number of cosets of S in G.)

F_i is the coset $\omega^{2i} \langle \omega^{2q(k/2)} \rangle$ in G ($0 \leq i \leq qc - 1$).

$C_j = F_{jc+0} \cup F_{jc+1} \cup \cdots \cup F_{(j+1)c-1}$ ($0 \leq j \leq q-1$).

The **q-Paley k-hypergraph of order n, $P_{n,k}^q = (V, E)$**, is the simple k-hypergraph with $V = \mathbb{F}_n$ and

$$\{x_1, x_2, \ldots, x_k\} \in E \iff \prod_{i<j} (x_i - x_j)^2 \in C_0.$$
$P_{n,k}^q$ is q-complementary

\[VM^2(x_1, x_2, \ldots, x_k) \in F_i \]
\[\iff VM^2(\omega x_1, \omega x_2, \ldots, \omega x_k) = \omega^{2\binom{k}{2}} VM^2(x_1, x_2, \ldots, x_k) \in F_{i+sc}, \]

where $\gcd(q, s) = 1$.

$T_{\omega,0} : x \rightarrow \omega x$ is a q-antimorphism of $P_{n,k}^q$.
\(P_{n,k}^q \) is vertex-transitive

For \(b \in \mathbb{F}_n \),

\[
VM^2(x_1, x_2, \ldots, x_k) \in F_i
\]

\[\iff VM^2(x_1 + b, x_2 + b, \ldots, x_k + b) = VM^2(x_1, x_2, \ldots, x_k) \in F_i.\]

\(T_{1,b} : x \rightarrow x + b \) is an automorphism of \(P_{n,k}^q \).
Automorphisms and q-antimorphisms of $P_{n,k}^q$

\[Aut(P_{n,k}^q) \geq \{ T_{a,b} \mid a = \omega^s, s \equiv 0 \pmod{q}, b \in \mathbb{F}_n \} \]

\[Ant_q(P_{n,k}^q) \supseteq \{ T_{a,b} \mid a = \omega^s, s \not\equiv 0 \pmod{q}, b \in \mathbb{F}_n \}. \]

$T_{a,b} : x \mapsto ax + b$

$Aut(P_{n,k}^q)$ contains an index-q subgroup of $AGL(1, n)$.
The q-Paley k-hypergraph $P^q_{n,k,r}$

Definition

q is prime, ℓ is the highest power of q dividing k or $k-1$.

n is a prime power, $n \equiv 1 \pmod{q^{\ell+1}}$

G is the group of squares in F_n^*.

r is a divisor of $(n-1)/q^{\ell+1}$.

$S = \langle \omega^{2r}q(r/2) \rangle$.

$c = \gcd(|G|, r \binom{k}{2}).$ (qc is the number of cosets of S in G.)

F_i is the coset $\omega^{2i} \langle \omega^{2r}q(r/2) \rangle$ in G ($0 \leq i \leq qc-1$).

$C_j = F_{jc+0} \cup F_{jc+1} \cup \cdots \cup F_{(j+1)c-1}$ ($0 \leq j \leq q - 1$).

The **q-Paley k-hypergraph of order n**, $P^q_{n,k,r} = (V, E)$, is the simple k-hypergraph with $V = F_n$ and

$$\{x_1, x_2, \ldots, x_k\} \in E \iff \prod_{i<j}(x_i - x_j)^2 \in C_0.$$
Automorphisms and q-antimorphisms of $P_{n,k,r}^q$

\[\text{Aut}(P_{n,k,r}^q) \geq \{ T_{a,b} \mid a = \omega^s, s \equiv 0 \pmod{q}, b \in \mathbb{F}_n \} \]

\[\text{Ant}_q(P_{n,k,r}^q) \supseteq \{ T_{a,b} \mid a = \omega^s, s \not\equiv 0 \pmod{q}, b \in \mathbb{F}_n \} \]

\[T_{a,b} : x \mapsto ax + b \]

\[\text{Aut}(P_{n,k,r}^q) \text{ contains an index-}qr \text{ subgroup of } AGL(1, n). \]
q-Paley k-hypergraph constructions

$q = 2, k = 2, r = 1$ (Paley)
$q = 2, k = 3, r = 1$, (Kocay, 1992)
$q = 2, k = 2$, any r (Peisert, 2001)
$q, k = 2$ (Li, Praeger 2003)(Li, Lim and Praeger 2009)
$q = 2$, any k, $r = 1$, (Potočnik and Šajna, 2009)
Odd prime q, any k, any r, (G. 2010)
Raymond Paley (1907-1933)