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Outline

e Motivations

- Uncertainty quantification
- PDE-based Inverse problems
- Test algorithms

e Corrector theory for elliptic equations with stochastic multiscale potential

- Corrector theory for random diffusion, 1D only
- Corrector theory for elliptic equations with random potential .
- Important factor: short-range v.s. long-range correlations

- Important factor: Singularity of Green’s function
e Corrector test for multiscale algorithms

- Well-known benchmark: capturing homogenization
- A new benchmark: capturing fluctuation ?

- Some results
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Typical problems

- Homogenization
F(D?uc, Duc, uc, x, g,w) =0 = F(D*uo, Duo, uo, z,w) = 0.
e.g., Dirichlet problem of stationary diffusion

-V A (g,w) Ve (z,w) = f(z) = —A" : D%up = f(z).

T

- Randomness is parametrized by (y,w). Here y set to be £, multi-scale
(two-scale).

- e.g., A(y,w) a random field in (Q, F,P) valued in uniformly elliptic
matrices.

- Just mild conditions: stationarity and ergodicity. The underlying
mechanism is essentially Law of large numbers, Birkhoff’s ergodic the-
orem.
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Typical problems

- Corrector Theory: us — uo.
Convergence rate: Ellu. — uo||7. <¢&”.
Statistics of the corrector.
ue —ug = (Eue — uo) + (ue — Eue).
That is, a decomposition into deterministic and stochastic correctors.
Want to write
ue(x) — uo(x) = ™ (deterministic)4¢"? (mean-zero random).
Limit of the deterministic corrector

Limit distribution of the random corrector

Ue — Eue  distr. . . .
————— —— certain statistics, e.g. Gaussian
g2 e—0

This requires more information regarding the random field.
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Motivation I: Uncertainty quantification

Forward UQ: uncertainty of coefficient propagate to solutions, etc.
- PDE model is given: physics is known .

- Corrector theory provides information about the statistics of solution.

- Good estimate of measurable events, e.g.,
P{uc(z0) > a} =7

- In the setting we have, we will see that not much information of the ran-
domness is propagated.

- The limiting distribution depends on wuo , and integrated information of
the randomness.
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Motivation II: PDE-based inverse problems

input : ¢ - output : T'(q)

physics
H noisel(observation)
q Y = Glg) + E
P““T Tnoise model
Tprior (q) Tnoise (€)

Then the Bayesian formulation becomes:

m(qY) X Tpr ()T (Y]g) = Tpr(q) Tnoise (Y — G(q))-
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Motivation II: PDE-based inverse problems

- Typically in an inverse problem, the high frequency part of ¢ cannot be
stably reconstructed.

- Model high frequency effect as noise.

- Corrector theory provides well-tailored noise model.

T
low frequency q = Uo
physics
uncertaintyl J{(observation)
propagation
random q+qG ————— e =uo+ F
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Motivation III: Test algorithms

Numerical schemes have been designed to approximate the homogenized
solution without resolving the e-scale , or calculating the effective coeffi-
cients .

Fluctuation is important sometimes, but can we use these (given by the
scheme)?

To analyze, we want to know what to compare with, i.e., what the corrector
is for the continuous equation.

Multiscale scheme yields u!; standard scheme for homogenized equation
yields ul. Test:

h h
U —U) h,e—0 e—0 Ue — UQ
g2 ? K g2
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Part II: Corrector theory

e The divergence equation —V - A (£,w) - Vuc = f in 1D
- mixing random field with short-range correlation.

- function of Gaussian random field with long-range correlation.

e Elliptic equation with multiscale random potential
x
(P(z, D) + qo(@))us +q (£,w) ue = £,

with Dirichlet boundary condition.

- assume Green’s function ~ |z — y|*~?, the effect of 3.
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1D divergence equation

—ﬁae(x,w)%ue = f(z),z € (0,1), with Dirichlet boundary.

e Random field model for a(z,w)
- Problem is well-posed for almost all realizations. Here, uniform elliptic-
ity, i.e.,
0< A <a(z,w) <A

- Stationarity and ergodicity.

- Define the harmonic mean ,

e Then u. converges, e.g. in H'(0,1) for a.e. w, to uo(z) which solves the
equation with effective coefficient a™.
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Corrector for the 1D divergence equation: Short-range case

Corrector theory requires finer knowledge of ¢q. A standard assumption is:
Strong mixing, p-mixing

/ |
| |2
‘th ‘FZH-T

R

Strong mixing coefficient p(r) is a non-negative function s.t.

1
|E(€n) — EE En| < p(r)(Varg Varn)?,
for any & and 7 that are F<; and F>4, measurable with finite variance.

- Assumption: p(r) < Cr~® for @« >1.[a>d in d-dimension case.]
In particular, this implies that the (auto)-correlation function

R(z) := E{q(0)q(x)},
is integrable. ¢(x,w) is then said to have “short-range correlation”.
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Corrector for the 1D divergence equation: Short-range case

Theorem [Bourgeat and Piatnitski '99] For short-range correlated field, the
convergence rate in L(Q, L*([0, 1])) is 1/c.

Elus — uol|* < Cel|fI|*.
Further, with the mixing condition, the corrector satisfies

Ue () — uo(Z) distribution

1
T —a/ L(x,t)dWs.
0

£2 e—0

Remark:

- The deterministic corrector is of order €. The random corrector has vari-
ance of order 1/, giving the central limit scaling.

- 0® = [ R(z)dz; strength of correlation.

- W4 is the standard Brownian motion. The integral explicitly determines a
Gaussian distribution on C(]0, 1]).

- The mixing condition is needed to apply central limit theorem.
- The kernel L(z,t) = a*20,G(z, t)up(t).
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Corrector for the 1D divergence equation: Long-range case

No CLT available. Consider special model:

- Let g(z,w) be a centered unit-variance Gaussian field, with long-range
correlation:

K
Ry(z) == E{g(y)g(y +z)} ~ ﬁ,a < d, for |z| large .

- Let ¢(z,w) = ®(g(z)) with ® : R — R being a nice function satisfying:
E®(g(0)) =0, E{g(0)®(g(0))} =: V1 #0 (define x = rgV7’).
The above can be written as:

/ Ho(z)®(z)d?z = 0, /H1 (2)®(x)d’x #0, {H,(z)} Hermite polynomials.
R R

Define Hermite rank to be the index of the first non-zero coefficient in
the expansion of ® in Hermite polynomials. The above condition can be
rephrased as: @ has Hermite rank one .
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Corrector for the 1D divergence equation: Long-range case

Theorem [Bal, Garnier, Motsch and Perrier '08] With the special model,
the convergence rate in L*(Q, L*([0, 1])) is v/&®.

Ellus —uoll* < Ce®||£]I*.

Further, the corrector satisfies

- istribution 1
e () — uo(T) distributio _UH/ Liz, )W
0

ey
£2 e—0

Remark

- Deterministic corrector is of order €; variance of the random corrector is
of order e“.

- H =1— /2 is called the Hurst index. ¢, = x/H(2H — 1).
- WH is the standard fractional Brownian motion with Hurst index H. The

integral explicitly determines a Gaussian distribution over C([0,1]) that
has strong correlation.

- This is not central limit per se.

- The previous results are convergence in distribution in the space of con-
tinuous functions.

- Non-Gaussian corrector if ® has Hermite rank > 2 .
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Corrector for elliptic equation with random potential

Elliptic equation with multiscale stochastic potential
P(xz,D)u: + (qo(x) + g (x,w))us = f, with Dirichlet Boundary.
- The Green’s function G(z,y) associated to P + qo satisfies
IGla,y)| < Clo — y| .

Smaller 8 corresponds to higher singularity near the origin.
- The random equation is well-posed under mild conditions e.g. go + g > 0.
- Solution operator of the random equation can be bounded uniformly in €.

- Assume ¢(x) satisfies the condition in item two, in addition to stationarity
and ergodicity.
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Examples of elliptic equations

For 8 = 2, we can consider

(—A +qo(2))ue + g (x)ue = f, =€ X,
u=0, z€dX.

For 8 < 2, we can consider

{ (—(=(=A)2) + qo(@)e + ge(x)ue = f, 3 € X,
u=0, z€X° =RN\X.
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Random fields

- Short-range correlated field
- p-mixing with p(r) < Cr=®, a > d.
- Estimates for moments of sufficient order.

- Superposition of Poisson bumps.
- Long-range correlated field
- As before g = ®(g), Rg(x) ~ Kglz|™, a < d.

- Further conditions on ® can lead to estimates of higher order moments,
e.g., a control of

E] [ a(x:) — Eq(z1)q(z2)Eq(xs)q(za) — Eq(z1)q(xs)Eq(x2)q(xa)

i=1

—Eq(z1)q(z4)Eq(z2)q(z3).
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Corrector for elliptic equation: short-range potential

Theorem [Bal and J. CMS ’11] With short-range correlated field, the con-
vergence rate is

g2b, if 28 < d,
Eljuc —uo||* < C|If|I* { e[ loge|, if 28 =d,
e, if 26 > d.

Further, the following holds in distribution in L*(X).

e — E € istribution
e e e, g [ G, y)us(y)ai,
X

ed/2 e—0

Remark:

- Random corrector has variance of order &%, indicating the central limit
scaling; deterministic corrector is larger if 8 < d/2 (Green’s function sin-
gular enough).

- Deterministic corrector can be estimated as well. For P = (—=A + )\2~)7%

on the whole space R?, we have lime ' (Eu. — uo) = eRGuo and R :=

J R(y)/27|y|dy.
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Corrector for elliptic equation: long-range potential

Theorem [Bal, Garnier, Gu and J.] With the long-range field and assume
28 < d, the convergence rate (in homogenization) is

e, if @ <23,
Ellue — uol|* < C|If|I* { | logel, if a =28,
g2b, if a > 26.

Assume a < 40; the following holds in distribution in L?(X):

- ]E{Us} distribution

== - [ Gamuowmw )

Remark:
- The deterministic corrector is of order e or ¢”, whichever is larger.

- Here, W2(dy) := W%(y)dy, and W< (y) is a centered Gaussian field with
covariance function |z — y|™ <.
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Part III: Corrector theory for multiscale algorithms

Given multiscale algorithm, test its ability to capture corrector.

h h
Uz — Ug h—0 Ue — UO
anl (:I"7w) . aAnl (ZI:,UJ)
£ 2 (4) £ 2
sﬁol(ii) (iii)laao

Ubipa (W) % Uapa (s W)
- Testing on the 1D divergence equation.
- ul is yielded by a given algorithm; uf is yielded by applying it to the
homogenized equation.

- Clearly, (i) and (z4¢) hold. All convergence are in distribution in C([0, 1]).
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MsFEM: multi-scale finite element method

Weak formulation of the random ODE is A.(ue,v) = F(v),

/01 ac(@)ul(2)v (x) = / @), Vo e HL.

- Finite element: approximate H¢; approximate A..
- Standard FEM: V* € H¢; hat base functions; h: discretization size

- MsFEM: multi-scale base function ¢Z; for each gf)é, construct
Lopl(x)=0, z€hLULU---Uln_1,
¢l = 4, z € {zxHhio.

- Linear system:
Alvus = Fe.

- Reference: Hou, Wu and Cai ’99; Efendiev and Hou '09
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HMM: heterogeneous multi-scale method

HMM aims to approximate ug. Given by minimizer of

1 2 1
I[u] := %Ao(u,u) — F(u) = %/0 a” <%) dm—/o fu dx.

Approximate bilinear form by
N du. o \2
Ao(u,u) = Za*(x ) (dx( J)) h
Without calculating a*, approximate further by

(w,v) Z /15 (:iiv) dx.

L L?
Due to the homogenization result: a.u. —— a*uj.
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HMM continued

The operator . is defined by

L(Lw)=0, zellu---UlX_q,
Lw = w, x € {8[;;};-\]:_11.

e I?: a small patch of size § inside Iy, € € § < h

e HMM: minimization problem with A¢, in the space Vi (hat base func-
tions).

e Equivalent with
Ah,6U5,6 _ FO
. =F".

Reference: E, Ming and Zhang ’'05
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The diagram commutes for MsFEM

Theorem [Bal and J., submitted]
(i) In random medium with short range correlation,

U]; (1’) — Ug (ZIJ) distribution Z/{h(x, W) distribution u(x7 W)
\/g e—0 h—0

U"(2; W) is a stochastic integral with integrand L"(x,t) and Brownian mo-
tion integrator.
(if) In random medium with long range correlation,

U]; (1’) ;Ug (ZIJ) distribution u[}}[ (ZII, WH) distribution Uy (ZII, WH)
£2 e—0 h—0

Uk (z; W) has fBm integrator. Here,

N — ~h —770
h QD Go T, Tk D Uk
L' (z,t) = E 17, (t)a” (2, 2x) +sth. else
h h
k=1
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HMM: depends on correlation ranges

distribution

Theorem (i) In random medium with short range correlation,
Z U(x; W).

h, /..
u (1’, W) h—0

h,§
e—0

ul®(2) — uf () distribution
NG
UM (z; W) is a stochastic integral with integrand L™°(x,t) and Brownian

motion integrator.
(if) In random medium with long range correlation,
u}—}’é( : WH) dist;ii\;tion UH(II’, WH)

h
— Ug (1’) distribution
e—0

UL’ (z; WH) has fBm integrator. Here,
a* DG (z,x) a* DU}
h h '

Banff, Mar. 31, 2011
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Remarks

- Roughly, what is happening is: In each interval I, we have X{, e ,X]J\,
be i.d with mean one and variance one; HMM approximate S; = Y~ X/ by
NXi.

- When X f o, X JJV are independent, the variance is amplified by N.

- For long-range media, the fluctuation lives at a macroscopic scale, and the
scaling is correct.

- Other schemes; higher dimensional test.
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Numerical implementation - I: short-range media

normalized corrector

- The equation: —-ta(%,w)-Luc(z,w) = f(z), z € (0,1),
- f = cos(mx), a* = 1, ¢(z,w) is the sign function of a Orstein-Uhlenbeck
process. a(z,w) = 1/(q(z,w) +a* ).

-h=26§5=29 =271,
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Numerical implementation - II: long-range media

MSFEM-FEM|

———— HMM-FEM

-0.05

-015

- The equation: —-La(Z,w)-L
- f = cos(mz), a* = 1, q(z,w) is the sign function of fBm increments.
a(z,w) = 1/(q(z,w) +a* 7).

a
-h=2%§=28 ¢=2712
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Summary

e Corrector theory, i.e., fluctuations about the homogenized solution, has
important applications in uncertainty quantification, PDE-based inverse
problems, and setting tests for multiscale algorithms.

e For elliptic equations with random multiscale potential, we develop a sys-
tematic theory for the corrector. In particular, regularity of the Green’s
function and correlation range of the random field are important factors.

e We found that multiscale numerical methods that captures homogenization
does not necessarily capture the right corrector. In particular, long-range
correlations is more “robust” w.r.t. sampling.
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