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Outline

• Motivations

- Uncertainty quantification

- PDE-based Inverse problems

- Test algorithms

• Corrector theory for elliptic equations with stochastic multiscale potential

- Corrector theory for random diffusion, 1D only

- Corrector theory for elliptic equations with random potential .

- Important factor: short-range v.s. long-range correlations

- Important factor: Singularity of Green’s function

• Corrector test for multiscale algorithms

- Well-known benchmark: capturing homogenization

- A new benchmark: capturing fluctuation ?

- Some results
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Typical problems

- Homogenization

F (D2uε, Duε, uε, x,
x

ε
, ω) = 0 =⇒ F (D2u0, Du0, u0, x, ω) = 0.

e.g., Dirichlet problem of stationary diffusion

−∇ · A
(x

ε
, ω

)

· ∇uε(x, ω) = f(x) =⇒ −A∗ : D2u0 = f(x).

· Randomness is parametrized by (y, ω). Here y set to be x
ε
, multi-scale

(two-scale).

· e.g., A(y, ω) a random field in (Ω,F , P) valued in uniformly elliptic
matrices.

· Just mild conditions: stationarity and ergodicity. The underlying
mechanism is essentially Law of large numbers, Birkhoff’s ergodic the-
orem.
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Typical problems

- Corrector Theory: uε − u0.

· Convergence rate: E‖uε − u0‖2L2 ≤ εγ .

· Statistics of the corrector.

uε − u0 = (Euε − u0) + (uε − Euε).

That is, a decomposition into deterministic and stochastic correctors.

· Want to write

uε(x)− u0(x) = εγ1(deterministic)+εγ2(mean-zero random).

· Limit of the deterministic corrector

· Limit distribution of the random corrector

uε − Euε

εγ2
distr.−−−→
ε→0

certain statistics, e.g. Gaussian

This requires more information regarding the random field.
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Motivation I: Uncertainty quantification

Forward UQ: uncertainty of coefficient propagate to solutions, etc.

- PDE model is given: physics is known .

- Corrector theory provides information about the statistics of solution.

- Good estimate of measurable events, e.g.,

P{uε(x0) > α} ≈?

- In the setting we have, we will see that not much information of the ran-
domness is propagated.

- The limiting distribution depends on u0 , and integrated information of
the randomness.
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Motivation II: PDE-based inverse problems

input : q
T−−−−−→

physics
output : T (q)

∥

∥

∥
noise





y

(observation)

q Y = G(q) + E

prior

x





x




noise model

πprior(q) πnoise(e)

Then the Bayesian formulation becomes:

π(q|Y ) ∝ πpr(q)π(Y |q) = πpr(q)πnoise(Y −G(q)).
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Motivation II: PDE-based inverse problems

· Typically in an inverse problem, the high frequency part of q cannot be
stably reconstructed.

· Model high frequency effect as noise.

· Corrector theory provides well-tailored noise model.

low frequency q
T−−−−−→

physics
u0

uncertainty





y





y

(observation)

random q + qε
propagation−−−−−−−→ uε = u0 + E
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Motivation III: Test algorithms

· Numerical schemes have been designed to approximate the homogenized
solution without resolving the ε-scale , or calculating the effective coeffi-
cients .

· Fluctuation is important sometimes, but can we use these (given by the
scheme)?

· To analyze, we want to know what to compare with, i.e., what the corrector
is for the continuous equation.

· Multiscale scheme yields uh
ε ; standard scheme for homogenized equation

yields uh
0 . Test:

uh
ε − uh

0

εγ2
h,ε→0−−−−→

?
µ

ε→0←−−− uε − u0

εγ2
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Part II: Corrector theory

• The divergence equation −∇ · A
(

x
ε
, ω

)

· ∇uε = f in 1D

· mixing random field with short-range correlation.

· function of Gaussian random field with long-range correlation.

• Elliptic equation with multiscale random potential

(P (x,D) + q0(x))uε + q
(x

ε
, ω

)

uε = f,

with Dirichlet boundary condition.

· assume Green’s function ∼ |x− y|d−β , the effect of β.
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1D divergence equation

− d

dx
aε(x,ω)

d

dx
uε = f(x), x ∈ (0, 1), with Dirichlet boundary.

• Random field model for a(x,ω)

- Problem is well-posed for almost all realizations. Here, uniform elliptic-
ity, i.e.,

0 < λ ≤ a(x,ω) ≤ Λ.

- Stationarity and ergodicity.

- Define the harmonic mean ,

a∗ :=

(

E
1

a(0, ω)

)−1

, q(x,ω) =
1

a(x,ω)
− 1

a∗
.

• Then uε converges, e.g. in H1(0, 1) for a.e. ω, to u0(x) which solves the
equation with effective coefficient a∗.
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Corrector for the 1D divergence equation: Short-range case

Corrector theory requires finer knowledge of q. A standard assumption is:
Strong mixing, ρ-mixing

- R���������� ��������

F≤t F≥t+r

Strong mixing coefficient ρ(r) is a non-negative function s.t.

|E(ξη)− Eξ Eη| ≤ ρ(r)(Varξ Varη)
1
2 ,

for any ξ and η that are F≤t and F≥t+r measurable with finite variance.

· Assumption: ρ(r) ≤ Cr−α for α > 1 . [ α > d in d-dimension case.]

In particular, this implies that the (auto)-correlation function

R(x) := E{q(0)q(x)},

is integrable. q(x,ω) is then said to have “short-range correlation”.
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Corrector for the 1D divergence equation: Short-range case

Theorem [Bourgeat and Piatnitski ’99] For short-range correlated field, the
convergence rate in L2(Ω, L2([0, 1])) is

√
ε.

E‖uε − u0‖2 ≤ Cε‖f‖2.

Further, with the mixing condition, the corrector satisfies

uε(x)− u0(x)

ε
1
2

distribution−−−−−−−→
ε→0

−σ
∫ 1

0

L(x, t)dWt.

Remark:

- The deterministic corrector is of order ε. The random corrector has vari-
ance of order

√
ε, giving the central limit scaling.

- σ2 =
∫

R(x)dx; strength of correlation.

- Wt is the standard Brownian motion. The integral explicitly determines a
Gaussian distribution on C([0, 1]).

- The mixing condition is needed to apply central limit theorem.

- The kernel L(x, t) = a∗2∂yG(x, t)u′
0(t).
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Corrector for the 1D divergence equation: Long-range case

No CLT available. Consider special model:

· Let g(x,ω) be a centered unit-variance Gaussian field, with long-range
correlation:

Rg(x) := E{g(y)g(y+ x)} ∼ κg

|x|α , α < d, for |x| large .

· Let q(x,ω) = Φ(g(x)) with Φ : R→ R being a nice function satisfying:

EΦ(g(0)) = 0, E{g(0)Φ(g(0))} =: V1 6= 0 (define κ = κgV
2
1 ).

The above can be written as:
∫

R

H0(x)Φ(x)d
gx = 0,

∫

R

H1(x)Φ(x)d
gx 6= 0, {Hn(x)} Hermite polynomials.

Define Hermite rank to be the index of the first non-zero coefficient in
the expansion of Φ in Hermite polynomials. The above condition can be
rephrased as: Φ has Hermite rank one .
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Corrector for the 1D divergence equation: Long-range case

Theorem [Bal, Garnier, Motsch and Perrier ’08] With the special model,
the convergence rate in L2(Ω, L2([0, 1])) is

√
εα.

E‖uε − u0‖2 ≤ Cεα‖f‖2.

Further, the corrector satisfies

uε(x)− u0(x)

ε
α
2

distribution−−−−−−−→
ε→0

−σH

∫ 1

0

L(x, t)dWH
t .

Remark

· Deterministic corrector is of order εα; variance of the random corrector is
of order εα.

· H = 1− α/2 is called the Hurst index. σ2
H = κ/H(2H − 1).

· WH
t is the standard fractional Brownian motion with Hurst index H . The

integral explicitly determines a Gaussian distribution over C([0, 1]) that
has strong correlation.

· This is not central limit per se.

· The previous results are convergence in distribution in the space of con-
tinuous functions.

· Non-Gaussian corrector if Φ has Hermite rank ≥ 2 .
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Corrector for elliptic equation with random potential

Elliptic equation with multiscale stochastic potential

P (x,D)uε + (q0(x) + qε(x,ω))uε = f, with Dirichlet Boundary.

· The Green’s function G(x, y) associated to P + q0 satisfies

|G(x, y)| ≤ C|x− y|−d+β.

Smaller β corresponds to higher singularity near the origin.

· The random equation is well-posed under mild conditions e.g. q0 + qε ≥ 0.

· Solution operator of the random equation can be bounded uniformly in ε.

· Assume q(x) satisfies the condition in item two, in addition to stationarity
and ergodicity.
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Examples of elliptic equations

For β = 2, we can consider

{

(−∆+ q0(x))uε + qε(x)uε = f, x ∈ X,

u = 0, x ∈ ∂X.

For β < 2, we can consider

{

(−(−(−∆)
β
2 ) + q0(x))uε + qε(x)uε = f, x ∈ X,

u = 0, x ∈ Xc = R
d\X.
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Random fields

- Short-range correlated field

· ρ-mixing with ρ(r) ≤ Cr−α, α > d.

· Estimates for moments of sufficient order.

· Superposition of Poisson bumps.

- Long-range correlated field

· As before q = Φ(g), Rg(x) ∼ κg|x|−α, α < d.

· Further conditions on Φ can lead to estimates of higher order moments,
e.g., a control of

E

4
∏

i=1

q(xi)− Eq(x1)q(x2)Eq(x3)q(x4)− Eq(x1)q(x3)Eq(x2)q(x4)

−Eq(x1)q(x4)Eq(x2)q(x3).
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Corrector for elliptic equation: short-range potential

Theorem [Bal and J. CMS ’11] With short-range correlated field, the con-
vergence rate is

E‖uε − u0‖2 ≤ C‖f‖2










ε2β , if 2β < d,

εd| log ε|, if 2β = d,

εd, if 2β > d.

Further, the following holds in distribution in L2(X).

uε − Euε

εd/2
distribution−−−−−−−→

ε→0
−σ

∫

X

G(x, y)u0(y)dWy.

Remark:

· Random corrector has variance of order εd, indicating the central limit
scaling; deterministic corrector is larger if β < d/2 (Green’s function sin-
gular enough).

· Deterministic corrector can be estimated as well. For P = (−∆+ λ2)−
1
2

on the whole space R
2, we have lim ε−1(Euε − u0) = εR̃Gu0 and R̃ :=

∫

R(y)/2π|y|dy.
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Corrector for elliptic equation: long-range potential

Theorem [Bal, Garnier, Gu and J.] With the long-range field and assume
2β < d, the convergence rate (in homogenization) is

E‖uε − u0‖2 ≤ C‖f‖2










εα, if α < 2β,

ε2β| log ε|, if α = 2β,

ε2β, if α > 2β.

Assume α < 4β; the following holds in distribution in L2(X):

uε − E{uε}
εα/2

distribution−−−−−−−→
ε→0

−
∫

X

G(x, y)u0(y)W
α(dy).

Remark:

- The deterministic corrector is of order εα or εβ, whichever is larger.

- Here, Wα(dy) := Ẇα(y)dy, and Ẇα(y) is a centered Gaussian field with
covariance function κ|x− y|−α.
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Part III: Corrector theory for multiscale algorithms

Given multiscale algorithm, test its ability to capture corrector.

uh
ε − uh

0

ε
α∧1
2

(x,ω)
h→0−−−−−→
(i)

uε − u0

ε
α∧1
2

(x, ω)

ε→0





y

(ii) (iii)





y
ε→0

Uh
α∧1(x;W

α∧1)
h→0−−−−−→
(iv)

Uα∧1(x;W
α∧1)

· Testing on the 1D divergence equation.

· uh
ε is yielded by a given algorithm; uh

0 is yielded by applying it to the
homogenized equation.

· Clearly, (i) and (iii) hold. All convergence are in distribution in C([0, 1]).
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MsFEM: multi-scale finite element method

Weak formulation of the random ODE is Aε(uε, v) = F (v),

∫ 1

0

aε(x)u
′
ε(x)v

′(x) =

∫ 1

0

f(x)v(x), ∀v ∈ H1
0 .

- Finite element: approximate H1
0 ; approximate Aε.

- Standard FEM: V h
0 ⊂ H1

0 ; hat base functions; h: discretization size

- MsFEM: multi-scale base function φj
ε; for each φj

0, construct

{

Lεφ
j
ε(x) = 0, x ∈ I1 ∪ I2 ∪ · · · ∪ IN−1,

φj
ε = φj

0, x ∈ {xk}Nk=0.

- Linear system:
Ah

εU
ε = F ε.

- Reference: Hou, Wu and Cai ’99; Efendiev and Hou ’09
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HMM: heterogeneous multi-scale method

HMM aims to approximate u0. Given by minimizer of

I [u] :=
1

2
A0(u, u)− F (u) =

1

2

∫ 1

0

a∗

(

du

dx

)2

dx−
∫ 1

0

fu dx.

Approximate bilinear form by

A0(u, u) ≈
N
∑

j=1

a∗(xj)

(

du

dx
(xj)

)2

h

Without calculating a∗, approximate further by

Aδ
ε(w, v) :=

N
∑

j=1

h

δ

∫

Iδ
j

aε
d(Lw)

dx

d(L v)

dx
dx.

Due to the homogenization result: aεu
′
ε

L2

−−→ a∗u′
0.
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HMM continued

The operator L is defined by

{

Lε(Lw) = 0, x ∈ Iδ1 ∪ · · · ∪ IδN−1,

Lw = w, x ∈ {∂Iδj }N−1
j=1 .

• Iδk : a small patch of size δ inside Ik, ε≪ δ < h

• HMM: minimization problem with Aδ
ε, in the space V h

0 (hat base func-
tions).

• Equivalent with
Ah,δ

ε Uε,δ = F 0.

Reference: E, Ming and Zhang ’05
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The diagram commutes for MsFEM

Theorem [Bal and J., submitted]
(i) In random medium with short range correlation,

uh
ε (x)− uh

0 (x)√
ε

distribution−−−−−−−→
ε→0

Uh(x;W )
distribution−−−−−−−→

h→0
U(x;W ).

Uh(x;W ) is a stochastic integral with integrand Lh(x, t) and Brownian mo-
tion integrator.
(ii) In random medium with long range correlation,

uh
ε (x)− uh

0 (x)

ε
α
2

distribution−−−−−−−→
ε→0

Uh
H(x;WH)

distribution−−−−−−−→
h→0

UH(x;WH).

Uh
H(x;WH) has fBm integrator. Here,

Lh(x, t) =
N
∑

k=1

1Ik (t)a
∗2D

−Gh
0 (x, xk)

h

D−U0
k

h
+sth. else
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HMM: depends on correlation ranges

Theorem (i) In random medium with short range correlation,

uh,δ
ε (x)− uh

0 (x)√
ε

distribution−−−−−−−→
ε→0

Uh,δ(x;W )
distribution−−−−−−−→

h→0

√

h

δ
U(x;W ).

Uh,δ(x;W ) is a stochastic integral with integrand Lh,δ(x, t) and Brownian
motion integrator.
(ii) In random medium with long range correlation,

uh,δ
ε (x)− uh

0 (x)

ε
α
2

distribution−−−−−−−→
ε→0

Uh,δ
H (x;WH)

distribution−−−−−−−→
h→0

UH(x;WH).

Uh,δ
H (x;WH) has fBm integrator. Here,

Lh,δ(x, t) =
h

δ

N
∑

k=1

1Iδ
k
(t)

a∗D−Gh
0 (x, xk)

h

a∗D−U0
k

h
.
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Remarks

· Roughly, what is happening is: In each interval Ij , we have Xj
1 , · · · , Xj

N

be i.d with mean one and variance one; HMM approximate Sj =
∑

Xj
i by

NXj
1 .

· When Xj
1 , · · · , Xj

N are independent, the variance is amplified by N .

· For long-range media, the fluctuation lives at a macroscopic scale, and the
scaling is correct.

· Other schemes; higher dimensional test.
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Numerical implementation - I: short-range media
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MsFEM−FEM
HMM−FEM
HMM−FEM corrected

- The equation: − d
dx

a(x
ε
, ω) d

dx
uε(x,ω) = f(x), x ∈ (0, 1),

- f = cos(πx), a∗ = 1, q(x, ω) is the sign function of a Orstein-Uhlenbeck
process. a(x,ω) = 1/(q(x, ω) + a∗−1).

- h = 2−6, δ = 2−9, ε = 2−14.
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Numerical implementation - II: long-range media
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MsFEM−FEM
HMM−FEM

- The equation: − d
dx

a(x
ε
, ω) d

dx
uε(x,ω) = f(x), x ∈ (0, 1),

- f = cos(πx), a∗ = 1, q(x, ω) is the sign function of fBm increments.
a(x,ω) = 1/(q(x, ω) + a∗−1).

- h = 2−5, δ = 2−8, ε = 2−12.
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Summary

• Corrector theory, i.e., fluctuations about the homogenized solution, has
important applications in uncertainty quantification, PDE-based inverse
problems, and setting tests for multiscale algorithms.

• For elliptic equations with random multiscale potential, we develop a sys-
tematic theory for the corrector. In particular, regularity of the Green’s
function and correlation range of the random field are important factors.

• We found that multiscale numerical methods that captures homogenization
does not necessarily capture the right corrector. In particular, long-range
correlations is more “robust” w.r.t. sampling.
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