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Boltzmann’s equation: the standard
approach to electric transport in the

bulk

field collisions
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Steady State:

field collisions
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( , ; )f f x p t! is a classical probability distribution



Can it be derived from quantum
mechanics?
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The answer is yes if Joule heating can be neglected (linear regime with the
applied field) and collisions with diluted impurities are considered

Kohn and Luttinger, Phys. Rev. 108, 590 (1957)

This paper also contains the idea that ring geometry and gauge invariance
can be used to apply an electric field to a periodic crystal

The resistance in the Ohmic regime is due to impurity and/or phonon
scattering. This resistance leads to energy dissipation



Electric transport at the nanoscale:
molecular electronics

A nano device (e.g. molecule + contacts) is part
of a circuit under an applied electromotive force.

Experiments measure the current I versus the
applied bias V. This gives the conductance

Macroscopically:
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Microscopically this formula is not valid and should be replaced by:

Landauer’s formula

This is a consequence of Quantum Mechanics



 Level quantization is a source of
resistance. Ballistic (dissipationless)

conductance
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If the channel contains 1 electron level, the maximum possible conductance,
taking spin degeneracy into account is 02G

This should be contrasted with   (Ohm's law)Ag
L
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Can ballistic and ohmic effects be treated in a unified way?



The standard approach to molecular electronics
focuses on ballistic transport

Steady state: Landauer formula

The transition probability T is calculated with scattering formulations,
i.e. by solving the Lippmann-Schwinger equation

or by using Green’s function techniques.

(ground-state) DFT formulations map the problem into an effective
single particle problem making numerical calculation possible
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Dynamic evolution:

Starting with the system in thermal equilibrium an electromotive force

is applied !(t)E            E = !""

This can be done using the technique of non-equilibrium Green’s
functions (Keldysh (1964))

In order to be tractable in a finite segment of the device the potential
must reach a constant value inside the two metallic electrodes

This is an approximation although a good one for practical purposes

It amounts to assuming constant (and different) chemical potentials in
an electrically connected system out of equilibrium (due to current flow)



Quantum Master Equations (QME)

• QMEs describe relaxation to equilibrium of a system coupled to a
heath bath

• They involve dynamics on a coarse grained time scale (kinetics),
possible because on the time scale of the relaxation some details of
the microscopic dynamics are irrelevant

• The quantum system is open (exchanges of heath with the bath are
allowed) and is generally in a mixed quantum state described by a
density operator (matrix)

• Typically they assume that the equilibrium solution is known, it is the
relaxation to equilibrium which is not

S



Lindblad QME
Harmonic bath, weak coupling Ve!ph , !C << !S H0 + R +Ve!ph

Jump operators:

Detailed balance:



Lindblad QME with time dependent bias

System relaxes to steady state:

Analogy with semi-classical Boltzmann equation:

field collisions

df f f
dt t t
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( , ; )f f x p t! classical probability distribution



Difficulty (exponentially hard)

is the electronic many-body Hamiltonian

is the electronic many-body density operator

H

S

Can we make this problem tractable?

Map to a fictitious non-interacting system having the same current
evolution of the interacting system

This involves extending TDDFT to dissipative systems (K Burke,
RC, R Gebauer, PRL 2005)

Knowing the current evolution we also know the density evolution
via the continuity equation



Non-interacting QME
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Tracing out N - 1 electronic degrees of freedom we obtain an
equation for the reduced single-particle density matrix:

m,n label KS (equilibrium) eigenstates

The jump operators are now given by Qnm = cn
†cm

Hartree approximation in the
collision operator

Bury what is left out in the KS potential!



KS QME
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Implying again
detailed balance

At equilibrium S becomes diagonal and its diagonal element are given by
the Fermi-Dirac distribution, i.e. the finite T generalization of DFT



Canonical vs Grand-canonical

The QME conserves the particle number N, thus cannot describe
fluctuations of N (canonical ensemble at equilibrium)

It does not allow to treat a system with open boundaries that can
exchange electrons with the environment (grand-canonical ensemble
at equilibrium)

This implies that in transport situations a whole circuit or something
mimicking it has to be used



Open and Closed Boundary
Conditions

A ring geometry, which allows current flow with close boundaries, can be
realized  with a proper choice of the gauge
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The v-gauge corresponds to a ring geometry in which an
electric current is induced by a magnetic flux

x-gauge

v-gauge

The electrons are then subject to a steady electromotive
force. Coupling to a heat bath prevent them from
accelerating indefinitely
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The Liouville-Master equation

Here:
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In the numerical implementation the electric field is systematically
“gauged” away to avoid indefinite “growth” of the Hamiltonian
with time. The result is that the effect of the electric field is
transferred from the Hamiltonian to the density matrix

R. Gebauer and R.C. (PRB 2004), S. Piccinin, R. Gebauer, RC, K.
Burke (in preparation)



A(t + !t)" A '(t + !t) = A(t)

Gauge transformation

For a finite ring of length L the following condition needs to be
imposed to keep S single-valued on the ring

Then             involves an additional coarse graining in time but it can be
made as small as required by exploiting Bloch’s theorem
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Generalized continuity equation (R. Gebauer and RC, PRL 2004)

The collision current is a quantum effect: collisions that change momentum also change
position (density distribution).

Because of the collision current
the power dissipated in the circuit
obeys:

The additional resistance
comes from the coupling to the
bath and is different from
Landauer’s residual resistivity
dipole (both effects however
originate from microscopic
inhomogeneity) (Gebauer,
Piccinin, RC, CPC 2005)

In actual calculations on small systems it is better to neglect the
collision current that would be unphysically large



Pseudopotential plane wave
calculations on molecular junctions

within DFT-GGA

From S. Piccinin, R. Gebauer, R.C., K. Burke, in preparation



A 3-atom gold wire

Visualization of the electronic current flow

Calculations using pseudopotentials and
plane waves in a supercell geometry

Potential drop in the position gauge



Issues: current contribution due to the bath;
effect of dissipation on current characteristics

At sufficiently large dissipative coupling the
conductance measured across the “ballistic”
junction shows saturation, becoming
“independent” of the dissipative coupling

Conductance fluctuations
with the number of atoms in
the wire (as found in NEGF
calculations, but out of
phase with experiment).
The conductance in our
calculation decreases with
the number of atoms in the
wire: an ohmic proximity
effect.

Experiments: Smit et al. PRL
(2003)



Benzene dithiolate (BDT) between gold slabs

Calculations at saturation for dissipative
coupling. Ref.1: Transiesta calculation
reported in:



A difficulty

Setting aside issues of system size and issues related to the presence
of a fictitious bath, the master equation works well numerically in
resonant or near resonant situations when the conductance is relatively
large. In off-resonant situations when the conductance (due to
tunneling) is extremely small it is much more convenient to use linear
response theory



How do   and            depend on the electronic
properties of the molecule, the metallic electrodes  and the
chemical contacts?

!

Zero bias conductance

Experiments on insulating molecules at weak bias

Why such behavior?



At zero bias the conductance is conveniently
calculated from Linear Response Theory

In the static limit within the adiabatic approximation of TDDFT

Thus only an equilibrium Kohn-Sham calculation is required in this
limit



It is convenient to model the system as a strictly periodic molecular
chain (an infinite polymer) strongly perturbed by the metallic leads



Exact asymptotic formula (E. Prodan and R.C., PRB (2007))

Link between electronic structure and experiment:



Agreement between theory and
experiment is good ….but

How do the results depend on the
numerical and physical
approximations?

Ref.1: Venkataraman et al, Nanolett.
(2006)

Ref.2: Chen et al., JACS (2006)

Ref.27: Fagas and Greer,
Nanotechnology (2007)

From Prodan and Car, Nanolett. (2008)



Phenyl Chains (E. Prodan and RC, PRB 2009)

In this case the same approach leads to conductances that are
~ 1 order of magnitude larger than experimental values: why?

The problem has to do with the Kohn Sham levels and particularly
the alignment of the molecular levels with the Fermi level of the
electrodes in presence of a relatively small KS gap in the molecule



(Some) Challenges

• Level alignment. Use GW approaches: at the static COHSEX
level one still has a Hamiltonian formulation and calculations
should be feasible, particularly for linear response
calculations...

• Dissipation effects (with “realistic” phonon and el-ph
couplings): in principle possible but require large systems
(feasible with simplified electronic structure models - should
allow to study the T dependence

• Approach to equilibrium not just steady state

• Beyond Markov approximation

• More subtle correlation effects (e.g. Kondo problem): how to
deal with them?

• Polaronic effects

  .......
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